624 resultados para Learning Approach
Resumo:
Utilizing the well-known Ultimatum Game, this note presents the following phenomenon. If we start with simple stimulus-response agents, learning through naive reinforcement, and then grant them some introspective capabilities, we get outcomes that are not closer but farther away from the fully introspective game-theoretic approach. The cause of this is the following: there is an asymmetry in the information that agents can deduce from their experience, and this leads to a bias in their learning process.
Resumo:
We provide robust examples of symmetric two-player coordination games in normal form that reveal that equilibrium selection by the evolutionary model of Young (1993) is essentially different from equilibrium selection by the evolutionary model of Kandori, Mailath and Rob (1993).
Resumo:
In this paper we study the relevance of multiple kernel learning (MKL) for the automatic selection of time series inputs. Recently, MKL has gained great attention in the machine learning community due to its flexibility in modelling complex patterns and performing feature selection. In general, MKL constructs the kernel as a weighted linear combination of basis kernels, exploiting different sources of information. An efficient algorithm wrapping a Support Vector Regression model for optimizing the MKL weights, named SimpleMKL, is used for the analysis. In this sense, MKL performs feature selection by discarding inputs/kernels with low or null weights. The approach proposed is tested with simulated linear and nonlinear time series (AutoRegressive, Henon and Lorenz series).
Resumo:
OBJECTIVETo identify the association between the use of web simulation electrocardiography and the learning approaches, strategies and styles of nursing degree students.METHODA descriptive and correlational design with a one-group pretest-posttest measurement was used. The study sample included 246 students in a Basic and Advanced Cardiac Life Support nursing class of nursing degree.RESULTSNo significant differences between genders were found in any dimension of learning styles and approaches to learning. After the introduction of web simulation electrocardiography, significant differences were found in some item scores of learning styles: theorist (p < 0.040), pragmatic (p < 0.010) and approaches to learning.CONCLUSIONThe use of a web electrocardiogram (ECG) simulation is associated with the development of active and reflexive learning styles, improving motivation and a deep approach in nursing students.
Resumo:
Utilizing the well-known Ultimatum Game, this note presents the following phenomenon. If we start with simple stimulus-response agents,learning through naive reinforcement, and then grant them some introspective capabilities, we get outcomes that are not closer but farther away from the fully introspective game-theoretic approach. The cause of this is the following: there is an asymmetry in the information that agents can deduce from their experience, and this leads to a bias in their learning process.
Resumo:
We provide robust examples of symmetric two-player coordination games in normal form that reveal that equilibrium selection bythe evolutionary model of Young (1993) is essentially different from equilibrium selection by the evolutionary model of Kandori, Mailath and Rob (1993).
Resumo:
In this paper we present a novel approach to assigning roles to robots in a team of physical heterogeneous robots. Its members compete for these roles and get rewards for them. The rewards are used to determine each agent’s preferences and which agents are better adapted to the environment. These aspects are included in the decision making process. Agent interactions are modelled using the concept of an ecosystem in which each robot is a species, resulting in emergent behaviour of the whole set of agents. One of the most important features of this approach is its high adaptability. Unlike some other learning techniques, this approach does not need to start a whole exploitation process when the environment changes. All this is exemplified by means of experiments run on a simulator. In addition, the algorithm developed was applied as applied to several teams of robots in order to analyse the impact of heterogeneity in these systems
Resumo:
In this paper we propose a novel unsupervised approach to learning domain-specific ontologies from large open-domain text collections. The method is based on the joint exploitation of Semantic Domains and Super Sense Tagging for Information Retrieval tasks. Our approach is able to retrieve domain specific terms and concepts while associating them with a set of high level ontological types, named supersenses, providing flat ontologies characterized by very high accuracy and pertinence to the domain.
Resumo:
The present research deals with an application of artificial neural networks for multitask learning from spatial environmental data. The real case study (sediments contamination of Geneva Lake) consists of 8 pollutants. There are different relationships between these variables, from linear correlations to strong nonlinear dependencies. The main idea is to construct a subsets of pollutants which can be efficiently modeled together within the multitask framework. The proposed two-step approach is based on: 1) the criterion of nonlinear predictability of each variable ?k? by analyzing all possible models composed from the rest of the variables by using a General Regression Neural Network (GRNN) as a model; 2) a multitask learning of the best model using multilayer perceptron and spatial predictions. The results of the study are analyzed using both machine learning and geostatistical tools.
Resumo:
Fragile X syndrome (FXS) is characterized by intellectual disability and autistic traits, and results from the silencing of the FMR1 gene coding for a protein implicated in the regulation of protein synthesis at synapses. The lack of functional Fragile X mental retardation protein has been proposed to result in an excessive signaling of synaptic metabotropic glutamate receptors, leading to alterations of synapse maturation and plasticity. It remains, however, unclear how mechanisms of activity-dependent spine dynamics are affected in Fmr knockout (Fmr1-KO) mice and whether they can be reversed. Here we used a repetitive imaging approach in hippocampal slice cultures to investigate properties of structural plasticity and their modulation by signaling pathways. We found that basal spine turnover was significantly reduced in Fmr1-KO mice, but markedly enhanced by activity. Additionally, activity-mediated spine stabilization was lost in Fmr1-KO mice. Application of the metabotropic glutamate receptor antagonist α-Methyl-4-carboxyphenylglycine (MCPG) enhanced basal turnover, improved spine stability, but failed to reinstate activity-mediated spine stabilization. In contrast, enhancing phosphoinositide-3 kinase (PI3K) signaling, a pathway implicated in various aspects of synaptic plasticity, reversed both basal turnover and activity-mediated spine stabilization. It also restored defective long-term potentiation mechanisms in slices and improved reversal learning in Fmr1-KO mice. These results suggest that modulation of PI3K signaling could contribute to improve the cognitive deficits associated with FXS.
Resumo:
This paper presents multiple kernel learning (MKL) regression as an exploratory spatial data analysis and modelling tool. The MKL approach is introduced as an extension of support vector regression, where MKL uses dedicated kernels to divide a given task into sub-problems and to treat them separately in an effective way. It provides better interpretability to non-linear robust kernel regression at the cost of a more complex numerical optimization. In particular, we investigate the use of MKL as a tool that allows us to avoid using ad-hoc topographic indices as covariables in statistical models in complex terrains. Instead, MKL learns these relationships from the data in a non-parametric fashion. A study on data simulated from real terrain features confirms the ability of MKL to enhance the interpretability of data-driven models and to aid feature selection without degrading predictive performances. Here we examine the stability of the MKL algorithm with respect to the number of training data samples and to the presence of noise. The results of a real case study are also presented, where MKL is able to exploit a large set of terrain features computed at multiple spatial scales, when predicting mean wind speed in an Alpine region.
Resumo:
At the Lausanne University, 5th year medical students were trained in Motivational interviewing (MI). Eight hours of training improved their competence in the use of this approach. This experience supports the implementation of MI training in medical schools. Motivational interviewing allows the health professional to actively involve the patient in this behavior change process (drinking, smoking, diet, exercise, medication adherence, etc.), by encouraging reflection and reinforcing personal motivation and resources.
Resumo:
The paper presents the Multiple Kernel Learning (MKL) approach as a modelling and data exploratory tool and applies it to the problem of wind speed mapping. Support Vector Regression (SVR) is used to predict spatial variations of the mean wind speed from terrain features (slopes, terrain curvature, directional derivatives) generated at different spatial scales. Multiple Kernel Learning is applied to learn kernels for individual features and thematic feature subsets, both in the context of feature selection and optimal parameters determination. An empirical study on real-life data confirms the usefulness of MKL as a tool that enhances the interpretability of data-driven models.
Resumo:
Radioactive soil-contamination mapping and risk assessment is a vital issue for decision makers. Traditional approaches for mapping the spatial concentration of radionuclides employ various regression-based models, which usually provide a single-value prediction realization accompanied (in some cases) by estimation error. Such approaches do not provide the capability for rigorous uncertainty quantification or probabilistic mapping. Machine learning is a recent and fast-developing approach based on learning patterns and information from data. Artificial neural networks for prediction mapping have been especially powerful in combination with spatial statistics. A data-driven approach provides the opportunity to integrate additional relevant information about spatial phenomena into a prediction model for more accurate spatial estimates and associated uncertainty. Machine-learning algorithms can also be used for a wider spectrum of problems than before: classification, probability density estimation, and so forth. Stochastic simulations are used to model spatial variability and uncertainty. Unlike regression models, they provide multiple realizations of a particular spatial pattern that allow uncertainty and risk quantification. This paper reviews the most recent methods of spatial data analysis, prediction, and risk mapping, based on machine learning and stochastic simulations in comparison with more traditional regression models. The radioactive fallout from the Chernobyl Nuclear Power Plant accident is used to illustrate the application of the models for prediction and classification problems. This fallout is a unique case study that provides the challenging task of analyzing huge amounts of data ('hard' direct measurements, as well as supplementary information and expert estimates) and solving particular decision-oriented problems.
Resumo:
Cette thèse explore dans quelle mesure la poursuite d'un but de performance-approche (i.e., le désir de surpasser autrui et de démontrer ses compétences) favorise, ou au contraire endommage, la réussite et l'apprentissage-une question toujours largement débattue dans la littérature. Quatre études menées en laboratoire ont confirmé cette hypothèse et démontré que la poursuite du but de performance-approche amène les individus à diviser leur attention entre d'une part la réalisation de la tâche évaluée, et d'autre part la gestion de préoccupations liées à l'atteinte du but-ceci empêchant une concentration efficace sur les processus de résolution de la tâche. Dans une deuxième ligne de recherche, nous avons ensuite démontré que cette distraction est exacerbée chez les individus les plus performants et ayant le plus l'habitude de réussir, ceci dérivant d'une pression supplémentaire liée au souhait de maintenir le statut positif de « bon élève ». Enfin, notre troisième ligne de recherche a cherché à réconcilier ces résultats-pointant l'aspect distractif du but de performance-approche-avec le profil se dégageant des études longitudinales rapportées dans la littérature-associant ce but avec la réussite académique. Ainsi, nous avons mené une étude longitudinale testant si l'adoption du but de performance-approche en classe pourrait augmenter la mise en oeuvre de stratégies d'étude tactiquement dirigées vers la performance-favorisant une réussite optimale aux tests. Nos résultats ont apporté des éléments en faveur de cette hypothèse, mais uniquement chez les élèves de bas niveau. Ainsi, l'ensemble de nos résultats permet de mettre en lumière les processus cognitifs à l'oeuvre lors de la poursuite du but de performance-approche, ainsi que d'alimenter le débat concernant leur aspect bénéfique ou nuisible en contexte éducatif. -- In this dissertation, we propose to investigate whether the pursuit of performance-approach goals (i.e., the desire to outperform others and appear talented) facilitates or rather endangers achievement and learning-an issue that is still widely discussed in the achievement goal literature. Four experiments carried out in a laboratory setting have provided evidence that performance- approach goals create a divided-attention situation that leads cognitive resources to be divided between task processing and the activation of goal-attainment concerns-which jeopardizes full cognitive immersion in the task. Then, in a second research line, we found evidence that high- achievers (i.e., those individuals who are the most used to succeed) experience, under evaluative contexts, heightened pressure to excel at the task, deriving from concerns associated with the preservation of their "high-achiever" status. Finally, a third research line was designed to try to reconcile results stemming from our laboratory studies with the overall profile emerging from longitudinal research-which have consistently found performance-approach goals to be a positive predictor of students' test scores. We thus set up a longitudinal study so as to test whether students' adoption of performance-approach goals in a long-term classroom setting enhances the implementation of strategic study behaviors tactically directed toward goal-attainment, hence favoring test performance. Our findings brought support for this hypothesis, but only for low-achieving students. Taken together, our findings shed new light on the cognitive processes at play during the pursuit of performance-approach goals, and are likely to fuel the debate regarding whether performance-approach goals should be encouraged or not in educational settings.