Semantic domains and supersens tagging for domain-specific ontology learning


Autoria(s): Picca D.; Gliozzo A.; Ciaramita M.
Data(s)

01/05/2007

Resumo

In this paper we propose a novel unsupervised approach to learning domain-specific ontologies from large open-domain text collections. The method is based on the joint exploitation of Semantic Domains and Super Sense Tagging for Information Retrieval tasks. Our approach is able to retrieve domain specific terms and concepts while associating them with a set of high level ontological types, named supersenses, providing flat ontologies characterized by very high accuracy and pertinence to the domain.

Identificador

http://serval.unil.ch/?id=serval:BIB_9611CAC2EE64

http://riao.free.fr/old_riao-2007/papers/8.pdf

Idioma(s)

en

Publicador

Paris: Centre des hautes études internationales d'informatique documentaire

Fonte

Recherche d'information assistée par ordinateur (RIAO). 8th Conference, Pittsburgh, 2007.

Tipo

info:eu-repo/semantics/conferenceObject

inproceedings