Multiple Kernel Learning of Environmental Data. Case study: Analysis and Mapping of Wind Fields


Autoria(s): Foresti L.; Tuia D.; Pozdnoukhov A.; Kanevski M.; Alippi C. (ed.); Polycarpou M. (ed.); Panayiotou C. (ed.); Ellinas G. (ed.)
Data(s)

2009

Resumo

The paper presents the Multiple Kernel Learning (MKL) approach as a modelling and data exploratory tool and applies it to the problem of wind speed mapping. Support Vector Regression (SVR) is used to predict spatial variations of the mean wind speed from terrain features (slopes, terrain curvature, directional derivatives) generated at different spatial scales. Multiple Kernel Learning is applied to learn kernels for individual features and thematic feature subsets, both in the context of feature selection and optimal parameters determination. An empirical study on real-life data confirms the usefulness of MKL as a tool that enhances the interpretability of data-driven models.

Identificador

http://serval.unil.ch/?id=serval:BIB_BA6BC1CA05F2

doi:10.1007/978-3-642-04277-5_94

isbn:978-3-642-04277-5

Idioma(s)

en

Publicador

Springer Berlin Heidelberg

Fonte

19th international conference on Artificial Neural Network ICANN, Limassol, Cyprus

Palavras-Chave #Multiple Kernel Learning; Support Vector; Regression; Feature Selection; Wind Speed Mapping
Tipo

info:eu-repo/semantics/conferenceObject

inproceedings