860 resultados para computer vision,machine learning,centernet,volleyball,sports
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica, Sistemas e Computadores
Resumo:
Students have different ways for learning and processing information. Some students prefer learning through seeing while others prefer learning through listening; some students prefer doing activities while other prefer reflecting.Some students reason logically, while others reason intuitively, etc. Identifying the learning style of each student, and providing learning content based on these styles represents a good method to enhance the learning quality. However, there are no efforts onhow to detect the students’ learning styles in mobile computer supported collaborative learning (MCSCL) environments. We present in this paper new ways for automatically detecting the learning styles of students in MCSCL environments based on the learning style model of Felder-Silverman. The identified learning styles of students could be then stored and used at anytime toassign each one of them to his/her appropriate learning group.
Resumo:
This research aims to advance blinking detection in the context of work activity. Rather than patients having to attend a clinic, blinking videos can be acquired in a work environment, and further automatically analyzed. Therefore, this paper presents a methodology to perform the automatic detection of eye blink using consumer videos acquired with low-cost web cameras. This methodology includes the detection of the face and eyes of the recorded person, and then it analyzes the low-level features of the eye region to create a quantitative vector. Finally, this vector is classified into one of the two categories considered —open and closed eyes— by using machine learning algorithms. The effectiveness of the proposed methodology was demonstrated since it provides unbiased results with classification errors under 5%
Resumo:
Text Mining has opened a vast array of possibilities concerning automatic information retrieval from large amounts of text documents. A variety of themes and types of documents can be easily analyzed. More complex features such as those used in Forensic Linguistics can gather deeper understanding from the documents, making possible performing di cult tasks such as author identi cation. In this work we explore the capabilities of simpler Text Mining approaches to author identification of unstructured documents, in particular the ability to distinguish poetic works from two of Fernando Pessoas' heteronyms: Alvaro de Campos and Ricardo Reis. Several processing options were tested and accuracies of 97% were reached, which encourage further developments.
Resumo:
Recently, there has been a growing interest in the field of metabolomics, materialized by a remarkable growth in experimental techniques, available data and related biological applications. Indeed, techniques as Nuclear Magnetic Resonance, Gas or Liquid Chromatography, Mass Spectrometry, Infrared and UV-visible spectroscopies have provided extensive datasets that can help in tasks as biological and biomedical discovery, biotechnology and drug development. However, as it happens with other omics data, the analysis of metabolomics datasets provides multiple challenges, both in terms of methodologies and in the development of appropriate computational tools. Indeed, from the available software tools, none addresses the multiplicity of existing techniques and data analysis tasks. In this work, we make available a novel R package, named specmine, which provides a set of methods for metabolomics data analysis, including data loading in different formats, pre-processing, metabolite identification, univariate and multivariate data analysis, machine learning, and feature selection. Importantly, the implemented methods provide adequate support for the analysis of data from diverse experimental techniques, integrating a large set of functions from several R packages in a powerful, yet simple to use environment. The package, already available in CRAN, is accompanied by a web site where users can deposit datasets, scripts and analysis reports to be shared with the community, promoting the efficient sharing of metabolomics data analysis pipelines.
Resumo:
Machine learning, inductive logic programming, search
Resumo:
El trabajo expuesto en la presente memoria, forma parte de un proyecto de colaboración entre el Centro de Visión por Computador de la UAB y el Centro Joan Amades (ONCE), cuyo objetivo es la creación de recursos educativos que faciliten la integración de niños invidentes en las aulas. Se presenta el proceso de implementación de un intérprete y traductor de documentos escritos en Braille con contenido matemático y de texto, que permite a un profesor que no conozca el sistema Braille, la lectura de documentos creados por alumnos invidentes. Dicho intérprete forma parte de una herramienta que permite el reconocimiento de documentos escritos con una máquina Perkins.
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior
Resumo:
This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs
Resumo:
We present a computer vision system that associates omnidirectional vision with structured light with the aim of obtaining depth information for a 360 degrees field of view. The approach proposed in this article combines an omnidirectional camera with a panoramic laser projector. The article shows how the sensor is modelled and its accuracy is proved by means of experimental results. The proposed sensor provides useful information for robot navigation applications, pipe inspection, 3D scene modelling etc
Resumo:
In a search for new sensor systems and new methods for underwater vehicle positioning based on visual observation, this paper presents a computer vision system based on coded light projection. 3D information is taken from an underwater scene. This information is used to test obstacle avoidance behaviour. In addition, the main ideas for achieving stabilisation of the vehicle in front of an object are presented
Resumo:
L'imagerie mentale est définie comme une expérience similaire à la perception mais se déroulant en l'absence d'une stimulation physique. Des recherches antérieures ont montré que l'imagerie mentale améliore la performance dans certains domaines, comme par exemple le domaine moteur. Cependant, son rôle dans l'apprentissage perceptif n'a pas encore été étudié. L'apprentissage perceptif correspond à l'amélioration permanente des performances suite à la répétition de la même tâche. Cette thèse présente une série des résultats empiriques qui montrent que l'apprentissage perceptif peut aussi être achevé en l'absence des stimuli physiques. En effet, imaginer des stimuli visuels amène à une meilleure performance avec les stimuli réels. Donc, les processus sous-jacents l'apprentissage perceptif ne sont pas uniquement déclenchés par les stimuli sensoriels, mais également par des signaux internes. En plus, l'apprentissage perceptif à travers l'imagerie mentale ne se réalise que seule-ment quand les stimuli ne sont pas (complètement) présents, mais gaiement quand les stimuli montrés ne sont pas utiles quant à la résolution de la tâche. - Mental imagery is described as an experience that resembles pereeptnal ex-perience but which occurs in the absence ef a physical stimulation. Despite its beneficial effects in, among others, motor performance, the role of mental imagery m perceptual learning has not yet been addressed. Here we focus on a specific sensory modality: vision. Perceptual learning is the ability to improve perception in a stable way through the repetition of a given task Here I demonstrate by a series of empirical results that a perceptual improve¬ment can also occur in the absence of a stimulation. Imagining visual stimuli is sufficient for successful perceptual learning. Hence, processes underlying perceptual learning are not only stimulus-driven but can also be driven by internally generated signals. Moreover, I also show that perceptual learning via mental imagery can occur not only when physical stimuli are (partially) absent, but also in conditions where stimuli are uninformative with respect to the task that has to be learned.
Resumo:
Emotions are crucial for user's decision making in recommendation processes. We first introduce ambient recommender systems, which arise from the analysis of new trends on the exploitation of the emotional context in the next generation of recommender systems. We then explain some results of these new trends in real-world applications through the smart prediction assistant (SPA) platform in an intelligent learning guide with more than three million users. While most approaches to recommending have focused on algorithm performance. SPA makes recommendations to users on the basis of emotional information acquired in an incremental way. This article provides a cross-disciplinary perspective to achieve this goal in such recommender systems through a SPA platform. The methodology applied in SPA is the result of a bunch of technology transfer projects for large real-world rccommender systems
Resumo:
Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one
Resumo:
We present a novel filtering method for multispectral satellite image classification. The proposed method learns a set of spatial filters that maximize class separability of binary support vector machine (SVM) through a gradient descent approach. Regularization issues are discussed in detail and a Frobenius-norm regularization is proposed to efficiently exclude uninformative filters coefficients. Experiments carried out on multiclass one-against-all classification and target detection show the capabilities of the learned spatial filters.