954 resultados para LIE-ALGEBRA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we deal with the notion of regulated functions with values in a C*-algebra A and present examples using a special bi-dimensional C*-algebra of triangular matrices. We consider the Dushnik integral for these functions and shows that a convenient choice of the integrator function produces an integral homomorphism on the C*-algebra of all regulated functions ([a, b], A). Finally we construct a family of linear integral functionals on this C*-algebra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the partition function of the super eigenvalue model satisfies, for finite N (non-perturbatively), an infinite set of constraints with even spins s = 4, 6, . . . , ∞. These constraints are associated with half of the bosonic generators of the super (W∞/2 ⊕ W1+∞/2) algebra. The simplest constraint (s = 4) is shown to be reducible to the super Virasoro constraints, previously used to construct the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multiseries integrable model (MSIM) is defined as a family of compatible flows on an infinite-dimensional Lie group of N-tuples of formal series around N given poles on the Riemann sphere. Broad classes of solutions to a MSIM are characterized through modules over rings of rational functions, called asymptotic modules. Possible ways for constructing asymptotic modules are Riemann-Hilbert and ∂̄ problems. When MSIM's are written in terms of the group coordinates, some of them can be contracted into standard integrable models involving a small number of scalar functions only. Simple contractible MSIM's corresponding to one pole, yield the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy. Two-pole contractible MSIM's are exhibited, which lead to a hierarchy of solvable systems of nonlinear differential equations consisting of (2 + 1) -dimensional evolution equations and of quite strong differential constraints. © 1989 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently Lukierski et al. [1] defined a κ-deformed Poincaré algebra which is characterized by having the energy-momentum and angular momentum sub-algebras not deformed. Further Biedenharn et al. [2] showed that on gauging the κ-deformed electron with the electromagnetic field, one can set a limit on the allowed value of the deformation parameter ∈ ≡ 1/κ < 1 fm. We show that one gets Regge like angular excitations, J, of the mesons, non-strange and strange baryons, with a value of ∈ ∼ 0.082 fm and predict a flattening with J of the corresponding trajectories. The Regge fit improves on including deformation, particularly for the baryon spectrum.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topics include: Free groups and presentations; Automorphism groups; Semidirect products; Classification of groups of small order; Normal series: composition, derived, and solvable series; Algebraic field extensions, splitting fields, algebraic closures; Separable algebraic extensions, the Primitive Element Theorem; Inseparability, purely inseparable extensions; Finite fields; Cyclotomic field extensions; Galois theory; Norm and trace maps of an algebraic field extension; Solvability by radicals, Galois' theorem; Transcendence degree; Rings and modules: Examples and basic properties; Exact sequences, split short exact sequences; Free modules, projective modules; Localization of (commutative) rings and modules; The prime spectrum of a ring; Nakayama's lemma; Basic category theory; The Hom functors; Tensor products, adjointness; Left/right Noetherian and Artinian modules; Composition series, the Jordan-Holder Theorem; Semisimple rings; The Artin-Wedderburn Theorem; The Density Theorem; The Jacobson radical; Artinian rings; von Neumann regular rings; Wedderburn's theorem on finite division rings; Group representations, character theory; Integral ring extensions; Burnside's paqb Theorem; Injective modules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topics include: Rings, ideals, algebraic sets and affine varieties, modules, localizations, tensor products, intersection multiplicities, primary decomposition, the Nullstellensatz

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We define the Virasoro algebra action on imaginary Verma modules for affine and construct an analogue of the Knizhnik-Zamolodchikov equation in the operator form. Both these results are based on a realization of imaginary Verma modules in terms of sums of partial differential operators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use computer algebra to study polynomial identities for the trilinear operation [a, b, c] = abc - acb - bac + bca + cab - cba in the free associative algebra. It is known that [a, b, c] satisfies the alternating property in degree 3, no new identities in degree 5, a multilinear identity in degree 7 which alternates in 6 arguments, and no new identities in degree 9. We use the representation theory of the symmetric group to demonstrate the existence of new identities in degree 11. The only irreducible representations of dimension <400 with new identities correspond to partitions 2(5), 1 and 2(4), 1(3) and have dimensions 132 and 165. We construct an explicit new multilinear identity for partition 2(5), 1 and we demonstrate the existence of a new non-multilinear identity in which the underlying variables are permutations of a(2)b(2)c(2)d(2)e(2) f.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report aims at giving a general overview on the classification of the maximal subgroups of compact Lie groups (not necessarily connected). In the first part, it is shown that these fall naturally into three types: (1) those of trivial type, which are simply defined as inverse images of maximal subgroups of the corresponding component group under the canonical projection and whose classification constitutes a problem in finite group theory, (2) those of normal type, whose connected one-component is a normal subgroup, and (3) those of normalizer type, which are the normalizers of their own connected one-component. It is also shown how to reduce the classification of maximal subgroups of the last two types to: (2) the classification of the finite maximal Sigma-invariant subgroups of centerfree connected compact simple Lie groups and (3) the classification of the Sigma-primitive subalgebras of compact simple Lie algebras, where Sigma is a subgroup of the corresponding outer automorphism group. In the second part, we explicitly compute the normalizers of the primitive subalgebras of the compact classical Lie algebras (in the corresponding classical groups), thus arriving at the complete classification of all (non-discrete) maximal subgroups of the compact classical Lie groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give a description of delta-derivations of (n + 1)-dimensional n-ary Filippov algebras and, as a consequence, of simple finite-dimensional Filippov algebras over an algebraically closed field of characteristic zero. We also give new examples of non-trivial delta-derivations of Filippov algebras and show that there are no non-trivial delta-derivations of the simple ternary Mal'tsev algebra M-8.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that the prime radical rad M of the free Malcev algebra M of rank more than two over a field of characteristic not equal 2 coincides with the set of all universally Engelian elements of M. Moreover, let T(M) be the ideal of M consisting of all stable identities of the split simple 7-dimensional Malcev algebra M over F. It is proved that rad M = J(M) boolean AND T(M), where J(M) is the Jacobian ideal of M. Similar results were proved by I. Shestakov and E. Zelmanov for free alternative and free Jordan algebras.