Controllability of control systems on complex simple lie groups and the topology of flag manifolds


Autoria(s): Santos, Ariane Luzia dos; Martin, Luiz Antonio Barreira San
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

15/07/2015

15/07/2015

2013

Resumo

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Processo FAPESP:07/06896-5

Let S be a subsemigroup with nonempty interior of a connected complex simple Lie group G. It is proved that S = G if S contains a subgroup G (α) ≈ Sl (2, C) generated by the exp g±α, where gα is the root space of the root α. The proof uses the fact, proved before, that the invariant control set of S is contractible in some flag manifold if S is proper, and exploits the fact that several orbits of G (α) are 2-spheres not null homotopic. The result is applied to revisit a controllability theorem and get some improvements.

Formato

157-171

Identificador

http://link.springer.com/article/10.1007%2Fs10883-013-9168-5

Journal of Dynamical and Control Systems, v. 19, n. 2, p. 157-171, 2013.

1079-2724

http://hdl.handle.net/11449/124683

http://dx.doi.org/10.1007/s10883-013-9168-5

3231282086023916

Idioma(s)

eng

Relação

Journal of Dynamical and Control Systems

Direitos

closedAccess

Palavras-Chave #Controllability #Simple Lie groups #Flag manifolds
Tipo

info:eu-repo/semantics/article