Controllability of control systems on complex simple lie groups and the topology of flag manifolds
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
15/07/2015
15/07/2015
2013
|
Resumo |
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Processo FAPESP:07/06896-5 Let S be a subsemigroup with nonempty interior of a connected complex simple Lie group G. It is proved that S = G if S contains a subgroup G (α) ≈ Sl (2, C) generated by the exp g±α, where gα is the root space of the root α. The proof uses the fact, proved before, that the invariant control set of S is contractible in some flag manifold if S is proper, and exploits the fact that several orbits of G (α) are 2-spheres not null homotopic. The result is applied to revisit a controllability theorem and get some improvements. |
Formato |
157-171 |
Identificador |
http://link.springer.com/article/10.1007%2Fs10883-013-9168-5 Journal of Dynamical and Control Systems, v. 19, n. 2, p. 157-171, 2013. 1079-2724 http://hdl.handle.net/11449/124683 http://dx.doi.org/10.1007/s10883-013-9168-5 3231282086023916 |
Idioma(s) |
eng |
Relação |
Journal of Dynamical and Control Systems |
Direitos |
closedAccess |
Palavras-Chave | #Controllability #Simple Lie groups #Flag manifolds |
Tipo |
info:eu-repo/semantics/article |