Higher spin constraints and the super (W∞/2 ⊕ W1+∞/2) algebra in the super eigenvalue model
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
27/05/2014
27/05/2014
13/02/1997
|
Resumo |
We show that the partition function of the super eigenvalue model satisfies, for finite N (non-perturbatively), an infinite set of constraints with even spins s = 4, 6, . . . , ∞. These constraints are associated with half of the bosonic generators of the super (W∞/2 ⊕ W1+∞/2) algebra. The simplest constraint (s = 4) is shown to be reducible to the super Virasoro constraints, previously used to construct the model. |
Formato |
321-330 |
Identificador |
http://www.sciencedirect.com/science/article/pii/S0370269396016401 Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, v. 393, n. 3-4, p. 321-330, 1997. 0370-2693 http://hdl.handle.net/11449/130419 http://dx.doi.org/10.1016/S0370-2693(96)01640-1 WOS:A1997WJ45800012 2-s2.0-18344416917 |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics |
Direitos |
closedAccess |
Tipo |
info:eu-repo/semantics/article |