954 resultados para HELICAL ANCHOR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The INFORMAS food prices module proposes a step-wise framework to measure the cost and affordability of population diets. The price differential and the tax component of healthy and less healthy foods, food groups, meals and diets will be benchmarked and monitored over time. Results can be used to model or assess the impact of fiscal policies, such as ‘fat taxes’ or subsidies. Key methodological challenges include: defining healthy and less healthy foods, meals, diets and commonly consumed items; including costs of alcohol, takeaways, convenience foods and time; selecting the price metric; sampling frameworks; and standardizing collection and analysis protocols. The minimal approach uses three complementary methods to measure the price differential between pairs of healthy and less healthy foods. Specific challenges include choosing policy relevant pairs and defining an anchor for the lists. The expanded approach measures the cost of a healthy diet compared to the current (less healthy) diet for a reference household. It requires dietary principles to guide the development of the healthy diet pricing instrument and sufficient information about the population’s current intake to inform the current (less healthy) diet tool. The optimal approach includes measures of affordability and requires a standardised measure of household income that can be used for different countries. The feasibility of implementing the protocol in different countries is being tested in New Zealand, Australia and Fiji. The impact of different decision points to address challenges will be investigated in a systematic manner. We will present early insights and results from this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the collagen triple-helical structure, large side groups occuring at location 3 in the repeating triplet sequences (Gly-Rz-Rz)n are appreciably constrained if a proline residue occurs as Rz in a neighbouring chain. The severity of the steric hindrance depends on the geometry of the prolyl ring. In this paper we propose two different puckerir.gs for the proline ring, the first one being energetically favorable for most types of residue sequences commonly found in collegen while the second is preferable when an amino acid residue with a large side group occurs at location 3 in a neighbouring chain. The puckering of the pyrrolidine ring of hydroxyproline, as proposed earlier, is quite favorable from energy as well as stereochemical considerations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relative stabilities of a- and Blo-helical structures for polymers of a-aminoisobutyric acid (Aib) have been worked out, using the classical potential energy functions. To make a comparative study, we have used Buckingham "6-exp" and Kitaigorodsky's potential functions. Conformational analysis of the dipeptide segment with Aib residue indicates the necessity for nonplanar distortion of the peptide unit, which is a common feature in the observed crystal structures with Aib residues. In the range of Aw -10 to +loo studied, a-helical conformations are preferred in the region -3" < Aw < +loo, and Blo-helical conformations are preferred in the region -3" > Aw > -10'. Minimum energy conformations for right-handed structures are found in the +ue region of Aw and correspondingly for left-handed structures in the -ue region of Aw. For Aw - 6", a-helical structures have four- or near fourfold symmetry with h - 1.5 A. Such a helix with n = 4 and h = 1.5 A is termed an a'-helix. This structure is found to be consistent with the electron diffraction data of Malcolm3 and energetically more favorable than the standard 310-helix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasma membrane adopts myriad of different shapes to carry out essential cellular processes such as nutrient uptake, immunological defence mechanisms and cell migration. Therefore, the details how different plasma membrane structures are made and remodelled are of the upmost importance. Bending of plasma membrane into different shapes requires substantial amount of force, which can be provided by the actin cytoskeleton, however, the molecules that regulate the interplay between the actin cytoskeleton and plasma membrane have remained elusive. Recent findings have placed new types of effectors at sites of plasma membrane remodelling, including BAR proteins, which can directly bind and deform plasma membrane into different shapes. In addition to their membrane-bending abilities, BAR proteins also harbor protein domains that intimately link them to the actin cytoskeleton. The ancient BAR domain fold has evolved into at least three structurally and functionally different sub-groups: the BAR, F-BAR and I-BAR domains. This thesis work describes the discovery and functional characterization of the Inverse-BAR domains (I-BARs). Using synthetic model membranes, we have shown that I-BAR domains bind and deform membranes into tubular structures through a binding-surface composed of positively charged amino acids. Importantly, the membrane-binding surface of I-BAR domains displays an inverse geometry to that of the BAR and F-BAR domains, and these structural differences explain why I-BAR domains induce cell protrusions whereas BAR and most F-BAR domains induce cell invaginations. In addition, our results indicate that the binding of I-BAR domains to membranes can alter the spatial organization of phosphoinositides within membranes. Intriguingly, we also found that some I-BAR domains can insert helical motifs into the membrane bilayer, which has important consequences for their membrane binding/bending functions. In mammals there are five I-BAR domain containing proteins. Cell biological studies on ABBA revealed that it is highly expressed in radial glial cells during the development of the central nervous system and plays an important role in the extension process of radial glia-like C6R cells by regulating lamellipodial dynamics through its I-BAR domain. To reveal the role of these proteins in the context of animals, we analyzed MIM knockout mice and found that MIM is required for proper renal functions in adult mice. MIM deficient mice displayed a severe urine concentration defect due to defective intercellular junctions of the kidney epithelia. Consistently, MIM localized to adherens junctions in cultured kidney epithelial cells, where it promoted actin assembly through its I-BAR andWH2 domains. In summary, this thesis describes the mechanism how I-BAR proteins deform membranes and provides information about the biological role of these proteins, which to our knowledge are the first proteins that have been shown to directly deform plasma membrane to make cell protrusions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fluorescence emission spectrum of soybean dihydrofolate reductase suggests that the emitting tryptophan residues are situated in a hydrophobic microenvironment. The dissociation constants determined from fluorescence and circular dichroism data reveal that the soybean enzyme has a lower affinity for substrates and substrate analogs than that determined for dihydrofolate reductases isolated from other sources. The binding of methotrexate to the soybean enzyme does not affect the binding of NADPH. Similarly, the binding of NADPH has no effect on subsequent methotrexate binding. Polarimetric study indicates that the enzyme has a low (ca. 5%) α-helical content. Addition of dihydrofolate to the soybean enzyme results in the generation of a positive ellipticity band at 298 nm with a molar ellipticity, [θ], of 186,000, whereas the binding of folate induces a negative ellipticity band at 280 nm with [θ] of −181,000. The qualitative and quantitative differences in the circular dichroism of the enzyme-dihydrofolate and enzyme-folate complexes indicate that the mode of binding of these ligands may be different. The formation of an enzyme-NADPH complex is accompanied by a negative Cotton effect at 270 nm. These studies indicate that the binding of substrates or inhibitors causes significant conformational changes in the enzyme and also leads to the formation of a number of spectroscopically identifiable complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the resistance of bacteria to conventional antibiotics has become an increasing problem, new antimicrobial drugs are urgently needed. One possible source of new antibacterial agents is a group of cationic antimicrobial peptides (CAMPs) produced by practically all living organisms. These peptides are typically small, amphipathic and positively charged and contain well defined a-helical or b-sheet secondary structures. The main antibacterial action mechanism of CAMPs is considered to be disruption of the cell membrane, but other targets of CAMPs also exist. Some bacterial species have evolved defence mechanisms against the harmful effects of CAMPs. One of the most effective defence mechanisms is reduction of the net negative charge of bacterial cell surfaces. Global analysis of gene expression of two Gram-positive bacteria, Bacillus subtilis and Staphylococcus aureus, was used to further study the stress responses induced by different types of CAMPs. B. subtilis cells were treated with sublethal concentrations of a-helical peptide LL-37, b-sheet peptide protegrin 1 or synthetic analogue poly-L-lysine, and the changes in gene expression were studied using DNA macroarrays. In the case of S. aureus, three different a-helical peptides were selected for the transcriptome analyses: temporin L, ovispirin-1 and dermaseptin K4-S4(1-16). Transcriptional changes caused by peptide stress were examined using oligo DNA microarrays. The transcriptome analysis revealed two main cell signalling mechanisms mediating CAMP stress responses in Gram-positive bacteria: extracytoplasmic function (ECF)sigma factors and two-component systems (TCSs). In B. subtilis, ECF sigma factors sigW and sigM as well as TCS LiaRS responded to the cell membrane disruption caused by CAMPs. In S. aureus, CAMPs caused a similar stress response to antibiotics interfering in cell wall synthesis, and TCS VraSR was strongly activated. All of these transcriptional regulators are known to respond to several compounds other than CAMPs interfering with cell envelope integrity, suggesting that they sense cell envelope stress in general. Among the most strongly induced genes were yxdLM (in B. subtilis) and vraDE (in S. aureus) encoding homologous ABC transporters. Transcription of yxdLM and vraDE operons is controlled by TCSs YxdJK and ApsRS, respectively. These TCSs seemed to be responsible for the direct recognition of CAMPs. The yxdLM operon was specifically induced by LL-37, but its role in CAMP resistance remained unclear. VraDE was proven to be a bacitracin transporter. We also showed that the net positive charge of the cell wall affects the signalrecognition of different TCSs responding to cell envelope stress. Inactivation of the Dlt system responsible for the D-alanylation of teichoic acids had a strong and differential effect on the activity of the studied TCSs, depending on their functional role in cells and the stimuli they sense.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The past several years have seen significant advances in the development of computational methods for the prediction of the structure and interactions of coiled-coil peptides. These methods are generally based on pairwise correlations of amino acids, helical propensity, thermal melts and the energetics of sidechain interactions, as well as statistical patterns based on Hidden Markov Model (HMM) and Support Vector Machine (SVM) techniques. These methods are complemented by a number of public databases that contain sequences, motifs, domains and other details of coiled-coil structures identified by various algorithms. Some of these computational methods have been developed to make predictions of coiled-coil structure on the basis of sequence information; however, structural predictions of the oligomerisation state of these peptides still remains largely an open question due to the dynamic behaviour of these molecules. This review focuses on existing in silico methods for the prediction of coiled-coil peptides of functional importance using sequence and/or three-dimensional structural data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aggregation of the microtubule associated protein tau (MAPT) within neurons of the brain is the leading cause of tauopathies such as Alzheimer's disease. MAPT is a phospho-protein that is selectively phosphorylated by a number of kinases in vivo to perform its biological function. However, it may become pathogenically hyperphosphorylated, causing aggregation into paired helical filaments and neurofibrillary tangles. The phosphorylation induced conformational change on a peptide of MAPT (htau225−250) was investigated by performing molecular dynamics simulations with different phosphorylation patterns of the peptide (pThr231 and/or pSer235) in different simulation conditions to determine the effect of ionic strength and phosphate charge. All phosphorylation patterns were found to disrupt a nascent terminal β-sheet pattern (226VAVVR230 and 244QTAPVP249), replacing it with a range of structures. The double pThr231/pSer235 phosphorylation pattern at experimental ionic strength resulted in the best agreement with NMR structural characterization, with the observation of a transient α-helix (239AKSRLQT245). PPII helical conformations were only found sporadically throughout the simulations. Proteins 2014; 82:1907–1923. © 2014 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A diastereomeric mixture of the tripeptide Boc-Ala-Ile-Aib-OMe crystallized in the space group P1 from CH3OH/H2O. The unit cell parameters are a = 10.593(2) A, b = 14.377(3) A, c = 17.872(4) A, alpha = 104.41(2) degrees, beta = 90.55(2) degrees, gamma = 106.91(2) degrees, V = 2512.4 A3, Z = 4. X-Ray crystallographic studies show the presence of four molecules in the asymmetric unit consisting of two pairs of diastereomeric peptides, Boc-L-Ala-L-Ile-Aib-OMe and Boc-L-Ala-D-Ile-Aib-OMe. The four molecules in the asymmetric unit form a rarely found mixed antiparallel and parallel beta-sheet hydrogen bond motif. The Ala and (L,D)-Ile residues in all the four molecules adopt the extended conformations, while the phi, psi values of the Aib residues are in the right-handed helical region. In one of the molecules the Ile sidechain adopts the unusual gauche conformation about the C beta-C gamma bond.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ALUMINIUM exposure has been shown to result in aggregation of microtubule-associated protein tau in vitro. In the light of recent observations that the native random structure of tau protein is maintained in its monomeric and dimeric states as well as in the paired helical filaments characteristic of Alzheimer's disease, it is likely that factors playing a causative role in neurofibrillary pathology would not drastically alter the native conformation of tau protein. We have studied the interaction of tau protein with aluminium using circular dichroism (CD) and 27(Al) NMR spectroscopy. The CD studies revealed a five-fold increase in the observed ellipticity of the tau-aluminium assembly. The increase in elipticity was not associated with a change in the general conformation of the protein and was most likely due to an aggregation of the tau protein induced by aluminium. Al-27 NMR spectroscopy confirmed the binding of aluminium to tau protein. Hyperphosphorylation of tau in Alzheimer's disease is known to be associated with defective microtubule assembly in this condition. Abnormally phosphorylated tau exists in a polymerized form in the paired helical filaments (PHF) which constitute the neurofibrillary tangles found in Alzheimer's disease. While it is hypothesized that its altered biophysical characteristics render abnormally phosphorylated tau resistant to proteolysis, causing the formation of stable deposits,the sequence of events resulting in the polymerization of tau are little understood, as are the additional factors or modifications required for tills process. Based on the results of our spectroscopic studies, a model for the sequence of events occurring in neurofibrillary pathology is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In situ cryocrystallographic Studies of chloro and bromo substituted anilines have been performed to evaluate the role of halogen...halogen interactions and the subsequent formation of supramolecular assemblies in the solid state. Ortho Cl/Br substituted anilines are isostructural and belong to the trigonal P3(1) space group. Halogen...halogen intermolecular contacts along with stronger N-H center dot center dot center dot N hydrogen bonds generate helical motifs along the crystallographic c-axis. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The omega amino acids have a larger degree of conformational variability than the alpha amino acids, leading to a greater diversity of backbone structures in peptides and polypeptides. The synthetic accessibility of chiral beta-amino acids and the recent observation of novel helical folds in oligomers of cyclic beta-amino acids has led to renewed interest in the stereochemistry of omega-amino acid containing peptides. This review focuses on the conformational characteristics of the polymethylene chain in omega-amino acid segments and surveys structural features in peptides established by X-ray diffraction. The literature on polymers of achiral omega-amino acids (nylon derivatives) and chiral, substituted derivatives derived from trifunctional alpha-amino acids, reveals that while sheet-like, intermolecular hydrogen bonded structures are formed by the former, folded helices appear favoured by the latter. omega-Amino acids promise to expand the repertoire of peptide folds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial surface-associated proteins are important in communication with the environment and bacteria-host interactions. In this thesis work, surface molecules of Lactobacillus crispatus important in host interaction were studied. The L. crispatus strains of the study were known from previous studies to be efficient in adhesion to intestinal tract and ECM. L. crispatus JCM 5810 possess an adhesive surface layer (S-layer) protein, whose functions and domain structure was characterized. We cloned two S-layer protein genes (cbsA; collagen-binding S-layer protein A and silent cbsB) and identified the protein region in CbsA important for adhesion to host tissues, for polymerization into a periodic layer as well as for attachment to the bacterial cell surface. The analysis was done by extensive mutation analysis and by testing His6-tagged fusion proteins from recombinant Escherichia coli as well as by expressing truncated CbsA peptides on the surface of Lactobacillus casei. The N-terminal region (31-274) of CbsA showed efficient and specific binding to collagens, laminin and extracellular matrix on tissue sections of chicken intestine. The N-terminal region also contained the information for formation of periodic S-layer polymer. This region is bordered at both ends by a conserved short region rich in valines, whose substitution to leucines drastically affected the periodic polymer structure. The mutated CbsA proteins that failed to form a periodic polymer, did not bind collagens, which indicates that the polymerized structure of CbsA is needed for collagen-binding ability. The C-terminal region, which is highly identical in S-layer proteins of L. crispatus, Lactobacillus acidophilus and Lactobacillus helveticus, was shown to anchor the protein to the bacterial cell wall. The C-terminal CbsA peptide specifically bound to bacterial teichoic acid and lipoteichoic acids. In conclusion, the N-terminal domain of the S-layer protein of L. crispatus is important for polymerization and adhesion to host tissues, whereas the C-terminal domain anchors the protein to bacterial cell-wall teichoic acids. Lactobacilli are fermentative organisms that effectively lower the surrounding pH. While this study was in progress, plasminogen-binding proteins enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were identified in the extracellular proteome of L. crispatus ST1. In this work, the cell-wall association of enolase and GAPDH were shown to rely on pH-reversible binding to the cell-wall lipoteichoic acids. Enolase from L. crispatus was functionally compared with enolase from L. johnsonii as well as from pathogenic streptococci (Streptococcus pneumoniae, Streptococcus pyogenes) and Staphylococcus aureus. His6-enolases from commensal lactobacilli bound human plasminogen and enhanced its activation by human plasminogen activators similarly to, or even better than, the enolases from pathogens. Similarly, the His6-enolases from lactobacilli exhibited adhesive characteristics previously assigned to pathogens. The results call for more detailed analyses of the role of the host plasminogen system in bacterial pathogenesis and commensalism as well of the biological role and potential health risk of the extracellular proteome in lactobacilli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histones H1a and H1t are two major linker histone variants present at the pachytene interval of mammalian spermatogenesis. The DNA- and chromatin-condensing properties of these two variants isolated from rat testes were studied and compared with those from rat liver. For this purpose, the histone H1 subtypes were purified from the respective tissues using bath acid and salt extraction procedures, Circular dichroism studies revealed that acid exposure during isolation affects the alpha-helical structure of both the globular domain (in the presence of 1 M NaCl) and the C-terminal lambda-tail (in the presence of 60% trifluoroethanol). The condensation of rat oligonucleosomal DNA, as measured by circular dichroism spectroscopy, by the salt-extracted histone H1 was at least 10 times more efficient than condensation by the acid-extracted histone H1. A site size of 16-20 base pairs was calculated for the salt-extracted histone H1. Among the different histone H1 subtypes, somatic histone H1bdec had the highest DNA-condensing property, followed by histone H1a and histone H1t. All the salt-extracted histones condensed rat oligonucleosomal DNA more efficiently than linear pBR-322 DNA, Histones H1bdec and H1a condensed histone H1-depleted chromatin, prepared from rat liver nuclei, with relatively equal efficiency. On the other hand, there was no condensation of histone H1-depleted chromatin with the testes specific histone H1t. A comparison of the amino acid sequences of histone H1d (rat) and histone H1t (rat) revealed several interesting differences in the occurrence of DNA-binding motifs at the C-terminus. A striking observation is the presence of a direct repeat of an octapeptide motif K(A)T(S)PKKA(S)K(T)K(A) in histone H1d that is absent in histone H1t.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histones H1a and H1t are two major linker histone variants present at the pachytene interval of mammalian spermatogenesis. The DNA- and chromatin-condensing properties of these two variants isolated from rat testes were studied and compared with those from rat liver. For this purpose, the histone H1 subtypes were purified from the respective tissues using bath acid and salt extraction procedures, Circular dichroism studies revealed that acid exposure during isolation affects the alpha-helical structure of both the globular domain (in the presence of 1 M NaCl) and the C-terminal lambda-tail (in the presence of 60% trifluoroethanol). The condensation of rat oligonucleosomal DNA, as measured by circular dichroism spectroscopy, by the salt-extracted histone H1 was at least 10 times more efficient than condensation by the acid-extracted histone H1. A site size of 16-20 base pairs was calculated for the salt-extracted histone H1. Among the different histone H1 subtypes, somatic histone H1bdec had the highest DNA-condensing property, followed by histone H1a and histone H1t. All the salt-extracted histones condensed rat oligonucleosomal DNA more efficiently than linear pBR-322 DNA, Histones H1bdec and H1a condensed histone H1-depleted chromatin, prepared from rat liver nuclei, with relatively equal efficiency. On the other hand, there was no condensation of histone H1-depleted chromatin with the testes specific histone H1t. A comparison of the amino acid sequences of histone H1d (rat) and histone H1t (rat) revealed several interesting differences in the occurrence of DNA-binding motifs at the C-terminus. A striking observation is the presence of a direct repeat of an octapeptide motif K(A)T(S)PKKA(S)K(T)K(A) in histone H1d that is absent in histone H1t.