876 resultados para Deformable face mask
Resumo:
Wavefront coding is a powerful technique that can be used to extend the depth of field of an incoherent imaging system. By adding a suitable phase mask to the aperture plane, the optical transfer function of a conventional imaging system can be made defocus invariant. Since 1995, when a cubic phase mask was first suggested, many kinds of phase masks have been proposed to achieve the goal of depth extension. In this Letter, a phase mask based on sinusoidal function is designed to enrich the family of phase masks. Numerical evaluation demonstrates that the proposed mask is not only less sensitive to focus errors than cubic, exponential, and modified logarithmic masks are, but it also has a smaller point-spread-function shifting effect. (C) 2010 Optical Society of America
Resumo:
In two papers [Proc. SPIE 4471, 272-280 (2001) and Appl. Opt. 43, 2709-2721 (2004)], a logarithmic phase mask was proposed and proved to be effective in extending the depth of field; however, according to our research, this mask is not that perfect because the corresponding defocused modulation transfer function has large oscillations in the low-frequency region, even when the mask is optimized. So, in a previously published paper [Opt. Lett. 33, 1171-1173 (2008)], we proposed an improved logarithmic phase mask by making a small modification. The new mask can not only eliminate the drawbacks to a certain extent but can also be even less sensitive to focus errors according to Fisher information criteria. However, the performance comparison was carried out with the modified mask not being optimized, which was not reasonable. In this manuscript, we optimize the modified logarithmic phase mask first before analyzing its performance and more convincing results have been obtained based on the analysis of several frequently used metrics. (C) 2010 Optical Society of America
Resumo:
Wave-front coding is a well known technique used to extend the depth of field of incoherent imaging system. The core of this technique lies in the design of suitable phase masks, among which the most important one is the cubic phase mask suggested by Dowski and Cathey (1995) [1]. In this paper, we propose a new type called cubic sinusoidal phase mask which is generated by combing the cubic one and another component having the sinusoidal form. Numerical evaluations and real experimental results demonstrate that the composite phase mask is superior to the original cubic phase mask with parameters optimized and provides another choice to achieve the goal of depth extension. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Using the level-set method and the continuum interface model, the axisymmetric thermocapillary migration of gas bubbles in an immiscible bulk liquid with a temperature gradient at moderate to large Marangoni number is simulated numerically. Constant material properties of the two phases are assumed. Steady state of the motion can always be reached. The terminal migration velocity decreases monotonously with the increase of the Marangoni number due to the wrapping of isotherms around the front surface of the bubble. Good agreements with space experimental data and previous theoretical and numerical studies in the literature are evident. Slight deformation of bubble is observed, but no distinct influence on the motion occurs. It is also found that the influence of the convective transport of heat inside bubbles cannot be neglected at finite Marangoni number, while the influence of the convective transport of momentum inside bubbles may be actually negligible.
Resumo:
Subspace learning is the process of finding a proper feature subspace and then projecting high-dimensional data onto the learned low-dimensional subspace. The projection operation requires many floating-point multiplications and additions, which makes the projection process computationally expensive. To tackle this problem, this paper proposes two simple-but-effective fast subspace learning and image projection methods, fast Haar transform (FHT) based principal component analysis and FHT based spectral regression discriminant analysis. The advantages of these two methods result from employing both the FHT for subspace learning and the integral vector for feature extraction. Experimental results on three face databases demonstrated their effectiveness and efficiency.
Resumo:
Films obtained via drying a polymeric latex dispersion are normally colloidal crystalline where latex particles are packed into a face centered cubic (fcc) structure. Different from conventional atomic crystallites or hard sphere colloidal crystallites, the crystalline structure of these films is normally deformable due to the low glass transition temperature of the latex particles. Upon tensile deformation, depending on the drawing direction with respect to the normal of specific crystallographic plane, one observes different crystalline structural changes. Three typical situations where crystallographic c-axis, body diagonal or face diagonal of the fcc structure of the colloidal crystallites being parallel to the stretching direction were investigated.
Resumo:
We report a simple method to directly pattern polymer-based photo luminescent material, i.e. a prepatterned mask is placed a close distance above it. The final structure is a positive replica of the lateral structures in the mask with submicrometer resolution. The comparison of luminescence efficiency before and after patterning indicates almost no degradation in optical property of the material during the experiments. The mechanism of pattern formation is also discussed.
Resumo:
A polymer dispersion consisting of soft latex spheres with a diameter of 135 nm was used to produce a crystalline film with face-centered cubic (fcc) packing of the spheres. Different from conventional small-molecule and hardsphere colloidal crystals, the crystalline latex film in the present case is soft (i.e., easily deformable). The structural evolution of this soft colloidal latex film under stretching was investigated by in-situ synchrotron ultra-small-angle X-ray scattering. The film exhibits polycrystalline scattering behavior corresponding to fcc structure. Stretching results not only in a large deformation of the crystallographic structure but also in considerable nonaffine deformation at high draw ratios. The unexpected nonaffine deformation was attributed to slippage between rows of particles and crystalline grain boundaries. The crystalline structure remains intact even at high deformation, suggesting that directional anisotropic colloidal crystallites can be easily produced.
Resumo:
This paper presents a straightforward method for patterning thin films of polymers, i.e. a prepatterned mask is used to induce self-assembly of polymers and the resulting pattern is the same as the lateral structures in the mask on a submicrometre length scale, The patterns can be formed at above T-g + 30 degreesC in a short time and the external electric field is not crucial. Electrostatic force is assumed to be the driving force for the pattern transfer. Viscous fingering and novel stress-relief lateral morphology induced under the featureless mask are also observed and the formation mechanisms are discussed.