889 resultados para Control systems.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this brief, a hybrid filter algorithm is developed to deal with the state estimation (SE) problem for power systems by taking into account the impact from the phasor measurement units (PMUs). Our aim is to include PMU measurements when designing the dynamic state estimators for power systems with traditional measurements. Also, as data dropouts inevitably occur in the transmission channels of traditional measurements from the meters to the control center, the missing measurement phenomenon is also tackled in the state estimator design. In the framework of extended Kalman filter (EKF) algorithm, the PMU measurements are treated as inequality constraints on the states with the aid of the statistical criterion, and then the addressed SE problem becomes a constrained optimization one based on the probability-maximization method. The resulting constrained optimization problem is then solved using the particle swarm optimization algorithm together with the penalty function approach. The proposed algorithm is applied to estimate the states of the power systems with both traditional and PMU measurements in the presence of probabilistic data missing phenomenon. Extensive simulations are carried out on the IEEE 14-bus test system and it is shown that the proposed algorithm gives much improved estimation performances over the traditional EKF method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The performance of real-time networks is under continuous improvement as a result of several trends in the digital world. However, these tendencies not only cause improvements, but also exacerbates a series of unideal aspects of real-time networks such as communication latency, jitter of the latency and packet drop rate. This Thesis focuses on the communication errors that appear on such realtime networks, from the point-of-view of automatic control. Specifically, it investigates the effects of packet drops in automatic control over fieldbuses, as well as the architectures and optimal techniques for their compensation. Firstly, a new approach to address the problems that rise in virtue of such packet drops, is proposed. This novel approach is based on the simultaneous transmission of several values in a single message. Such messages can be from sensor to controller, in which case they are comprised of several past sensor readings, or from controller to actuator in which case they are comprised of estimates of several future control values. A series of tests reveal the advantages of this approach. The above-explained approach is then expanded as to accommodate the techniques of contemporary optimal control. However, unlike the aforementioned approach, that deliberately does not send certain messages in order to make a more efficient use of network resources; in the second case, the techniques are used to reduce the effects of packet losses. After these two approaches that are based on data aggregation, it is also studied the optimal control in packet dropping fieldbuses, using generalized actuator output functions. This study ends with the development of a new optimal controller, as well as the function, among the generalized functions that dictate the actuator’s behaviour in the absence of a new control message, that leads to the optimal performance. The Thesis also presents a different line of research, related with the output oscillations that take place as a consequence of the use of classic co-design techniques of networked control. The proposed algorithm has the goal of allowing the execution of such classical co-design algorithms without causing an output oscillation that increases the value of the cost function. Such increases may, under certain circumstances, negate the advantages of the application of the classical co-design techniques. A yet another line of research, investigated algorithms, more efficient than contemporary ones, to generate task execution sequences that guarantee that at least a given number of activated jobs will be executed out of every set composed by a predetermined number of contiguous activations. This algorithm may, in the future, be applied to the generation of message transmission patterns in the above-mentioned techniques for the efficient use of network resources. The proposed task generation algorithm is better than its predecessors in the sense that it is capable of scheduling systems that cannot be scheduled by its predecessor algorithms. The Thesis also presents a mechanism that allows to perform multi-path routing in wireless sensor networks, while ensuring that no value will be counted in duplicate. Thereby, this technique improves the performance of wireless sensor networks, rendering them more suitable for control applications. As mentioned before, this Thesis is centered around techniques for the improvement of performance of distributed control systems in which several elements are connected through a fieldbus that may be subject to packet drops. The first three approaches are directly related to this topic, with the first two approaching the problem from an architectural standpoint, whereas the third one does so from more theoretical grounds. The fourth approach ensures that the approaches to this and similar problems that can be found in the literature that try to achieve goals similar to objectives of this Thesis, can do so without causing other problems that may invalidate the solutions in question. Then, the thesis presents an approach to the problem dealt with in it, which is centered in the efficient generation of the transmission patterns that are used in the aforementioned approaches.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this chapter is to introduce background concepts in nonlinear systems identification and control with artificial neural networks. As this chapter is just an overview, with a limited page space, only the basic ideas will be explained here. The reader is encouraged, for a more detailed explanation of a specific topic of interest, to consult the references given throughout the text. Additionally, as general books in the field of neural networks, the books by Haykin [1] and Principe et al. [2] are suggested. Regarding nonlinear systems identification, covering both classical and neural and neuro-fuzzy methodologies, Reference 3 is recommended. References 4 and 5 should be used in the context of B-spline networks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One of the aspects of modern agriculture is characterised by a culture without soil (hydroponic cultures). These culture techniques are identified by possessing automatic control systems to control the nutrient solution. In first hydroponic cultures this control was accomplished by “on- off” analog controllers that applied a single control law implemented in hardware. Therefore, the changes of the control law resulted in the change of all interface electronics. In digital control implemented by micro-controllers the alteration of such control law is easily performed by changing only a computer program, leaving untouched all the interface hardware. In this way, the use and substitution of the control strategy is improved, as well, the use of advanced control strategies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper a parallel implementation of an Adaprtive Generalized Predictive Control (AGPC) algorithm is presented. Since the AGPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Shrimp grow out systems under zero water exchange mode demand constant remediation of total ammonia nitrogen (TAN) andNO2 −–Nto protect the crop. To address this issue, aninexpensive and user-friendly technology using immobilized nitrifying bacterial consortia (NBC) as bioaugmentors has been developed and proposed for adoption in shrimp culture systems. Indigenous NBC stored at 4 °C were activated at room temperature (28 °C) and cultured in a 2 L bench top fermentor. The consortia, after enumeration by epifluorescence microscopy,were immobilized on delignifiedwood particles of a soft wood tree Ailantus altissima (300–1500 μm) having a surface area of 1.87m2 g−1. Selection of wood particle as substratumwas based on adsorption of NBC on to the particles, biofilm formation, and their subsequent nitrification potential. The immobilization could be achievedwithin 72 h with an initial cell density of 1×105 cells mL−1. On experimenting with the lowest dosage of 0.2 g (wet weight) immobilized NBC in 20 L seawater, a TAN removal rate of 2.4 mg L−1 within three days was observed. An NBC immobilization device could be developed for on site generation of the bioaugmentor preparation as per requirement. The product of immobilization never exhibited lag phase when transferred to fresh medium. The extent of nitrification in a simulated systemwas two times the rate observed in the control systems suggesting the efficacy in real life situations. The products of nitrification in all experiments were undetectable due to denitrifying potency, whichmade the NBC an ideal option for biological nitrogen removal. The immobilized NBC thus generated has been named TANOX (Total Ammonia Nitrogen Oxidizer)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aquest projecte pretén presentar de forma clara i detallada l’estructura i el funcionament del robot així com dels components que el conformen. Aquesta informació és de vital importància a l’hora de desenvolupar aplicacions per al robot. Un cop descrites les característiques del robot s’analitzaran les eines necessàries i/o disponibles per poder desenvolupar programari per cada nivell de la forma més senzilla i eficient possible. Posteriorment s’analitzaran els diferents nivells de programació i se’n contrastaran els avantatges i els inconvenients de cada un. Aquest anàlisi es començarà fent pel nivell més alt i anirà baixant amb la intenció de no entrar en nivells més baixos del necessari. Baixar un nivell en la programació suposa haver de crear aplicacions sempre compatibles amb els nivells superiors de forma que com més es baixa més augmenta la complexitat. A partir d’aquest anàlisi s’ha arribat a la conclusió que per tal d’aprofitar totes les prestacions del robot és precís arribar a programar en el nivell més baix del robot. Finalment l’objectiu és obtenir una sèrie de programes per cada nivell que permetin controlar el robot i fer-lo seguir senzilles trajectòries

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aquest projecte s’aplica sobre el robot PRIM (Plataforma Robotitzada d’Informació Multimèdia), un robot autònom no humanoide creat el 2004 per Ateneu Informàtic (AI) que permet realitzar trajectòries 2D gràcies a un sistema de tracció format per dues rodes motrius propulsades independentment. La plataforma PRIM és controlada a partir del control predictiu, aquest control es va implementar en un projecte anterior, creat per l’Alexandre Blasco Gutierrez i titulat “Implementació de tècniques MPC (Model Predictiu Control) sobre la plataforma PRIM I”. El que es pretén en aquest projecte és millorar els resultats obtinguts en el passat projecte reformulant la llei de control i analitzar les discrepàncies obtingudes en les metodologies que s’utilitzen per minimitzar la funció de costos a partir de simulacions de trajectòries

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper proposes a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, when using RL, has been to apply value function based algorithms, the system here detailed is characterized by the use of direct policy search methods. Rather than approximating a value function, these methodologies approximate a policy using an independent function approximator with its own parameters, trying to maximize the future expected reward. The policy based algorithm presented in this paper is used for learning the internal state/action mapping of a behavior. In this preliminary work, we demonstrate its feasibility with simulated experiments using the underwater robot GARBI in a target reaching task

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work extends a previously developed research concerning about the use of local model predictive control in differential driven mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are briefly introduced. In this sense, monocular image data can be used to plan safety trajectories by using goal attraction potential fields

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a complete control architecture that has been designed to fulfill predefined missions with an autonomous underwater vehicle (AUV). The control architecture has three levels of control: mission level, task level and vehicle level. The novelty of the work resides in the mission level, which is built with a Petri network that defines the sequence of tasks that are executed depending on the unpredictable situations that may occur. The task control system is composed of a set of active behaviours and a coordinator that selects the most appropriate vehicle action at each moment. The paper focuses on the design of the mission controller and its interaction with the task controller. Simulations, inspired on an industrial underwater inspection of a dam grate, show the effectiveness of the control architecture

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper surveys control architectures proposed in the literature and describes a control architecture that is being developed for a semi-autonomous underwater vehicle for intervention missions (SAUVIM) at the University of Hawaii. Conceived as hybrid, this architecture has been organized in three layers: planning, control and execution. The mission is planned with a sequence of subgoals. Each subgoal has a related task supervisor responsible for arranging a set of pre-programmed task modules in order to achieve the subgoal. Task modules are the key concept of the architecture. They are the main building blocks and can be dynamically re-arranged by the task supervisor. In our architecture, deliberation takes place at the planning layer while reaction is dealt through the parallel execution of the task modules. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment