969 resultados para Algebraic renormalization
Resumo:
Projecte de recerca elaborat a partir d’una estada a la Università degli studi di Siena, Italy , entre 2007 i 2009. El projecte ha consistit en un estudi de la formalització lògica del raonament en presència de vaguetat amb els mètodes de la Lògica Algebraica i de la Teoria de la Prova. S'ha treballat fonamental en quatre direccions complementàries. En primer lloc, s'ha proposat un nou plantejament, més abstracte que el paradigma dominant fins ara, per l'estudi dels sistemes de lògica borrosa. Fins ara en l'estudi d'aquests sistemes l'atenció havia recaigut essencialment en l'obtenció de semàntiques basades en tnormes contínues (o almenys contínues per l'esquerra). En primer nivell de major abstracció hem estudiat les propietats de completesa de les lògiques borroses (tant proposicionals com de primer ordre) respecte de semàntiques definides sobre qualsevol cadena de valors de veritat, no necessàriament només sobre l'interval unitat dels nombres reals. A continuació, en un nivell encara més abstracte, s’ha pres l'anomenada jerarquia de Leibniz de la Lògica Algebraica Abstracta que classifica tots els sistemes lògics amb un bon comportament algebraic i s'ha expandit a una nova jerarquia (que anomenem implicacional) que permet definir noves classes de lògiques borroses que contenen quasi totes les conegudes fins ara. En segon lloc, s’ha continuat una línia d'investigació iniciada els darrers anys consistent en l'estudi de la veritat parcial com a noció sintàctica (és a dir, com a constants de veritat explícites en els sistemes de prova de les lògiques borroses). Per primer cop, s’ha considerat la semàntica racional per les lògiques proposicionals i la semàntica real i racional per les lògiques de primer ordre expandides amb constants. En tercer lloc, s’ha tractat el problema més fonamental del significat i la utilitat de les lògiques borroses com a modelitzadores de (part de) els fenòmens de la vaguetat en un darrer article de caràcter més filosòfic i divulgatiu, i en un altre més tècnic en què defensem la necessitat i presentem l'estat de l'art de l'estudi de les estructures algèbriques associades a les lògiques borroses. Finalment, s’ha dedicat la darrera part del projecte a l'estudi de la complexitat aritmètica de les lògiques borroses de primer ordre.
Resumo:
La meva recerca en els tres anys de gaudiment de beca s'ha centrat en l'estudi de teories semitopològiques definides a través d'espais de cicles algebraics, introduïts per Friedlander i Lawson. Hem estudiat propietats de descens d'aquestes teories i hem construït una successió espectral que calcula explícitament la cohomologia mòrfica d'una varietat tòrica. D'altra banda, estem treballant en l'estudi de propietats d'invariància homotòpica per la cohomologia mòrfica, així com en l'estructura algebraica dels grups d'homologia de Lawson.
Resumo:
BACKGROUND: We sought to improve upon previously published statistical modeling strategies for binary classification of dyslipidemia for general population screening purposes based on the waist-to-hip circumference ratio and body mass index anthropometric measurements. METHODS: Study subjects were participants in WHO-MONICA population-based surveys conducted in two Swiss regions. Outcome variables were based on the total serum cholesterol to high density lipoprotein cholesterol ratio. The other potential predictor variables were gender, age, current cigarette smoking, and hypertension. The models investigated were: (i) linear regression; (ii) logistic classification; (iii) regression trees; (iv) classification trees (iii and iv are collectively known as "CART"). Binary classification performance of the region-specific models was externally validated by classifying the subjects from the other region. RESULTS: Waist-to-hip circumference ratio and body mass index remained modest predictors of dyslipidemia. Correct classification rates for all models were 60-80%, with marked gender differences. Gender-specific models provided only small gains in classification. The external validations provided assurance about the stability of the models. CONCLUSIONS: There were no striking differences between either the algebraic (i, ii) vs. non-algebraic (iii, iv), or the regression (i, iii) vs. classification (ii, iv) modeling approaches. Anticipated advantages of the CART vs. simple additive linear and logistic models were less than expected in this particular application with a relatively small set of predictor variables. CART models may be more useful when considering main effects and interactions between larger sets of predictor variables.
Resumo:
In this paper, we compute the triangular spectrum (as de fined by P. Balmer) of two classes of tensor triangulated categories which are quite common in algebraic geometry. One of them is the derived category of G-equivariant sheaves on a smooth scheme X, for a fi nite group G. The other class is the derived category of split superschemes.
Resumo:
First discussion on compositional data analysis is attributable to Karl Pearson, in 1897. However, notwithstanding the recent developments on algebraic structure of the simplex, more than twenty years after Aitchison’s idea of log-transformations of closed data, scientific literature is again full of statistical treatments of this type of data by using traditional methodologies. This is particularly true in environmental geochemistry where besides the problem of the closure, the spatial structure (dependence) of the data have to be considered. In this work we propose the use of log-contrast values, obtained by asimplicial principal component analysis, as LQGLFDWRUV of given environmental conditions. The investigation of the log-constrast frequency distributions allows pointing out the statistical laws able togenerate the values and to govern their variability. The changes, if compared, for example, with the mean values of the random variables assumed as models, or other reference parameters, allow definingmonitors to be used to assess the extent of possible environmental contamination. Case study on running and ground waters from Chiavenna Valley (Northern Italy) by using Na+, K+, Ca2+, Mg2+, HCO3-, SO4 2- and Cl- concentrations will be illustrated
Resumo:
We present a detailed analytical and numerical study of the avalanche distributions of the continuous damage fiber bundle model CDFBM . Linearly elastic fibers undergo a series of partial failure events which give rise to a gradual degradation of their stiffness. We show that the model reproduces a wide range of mechanical behaviors. We find that macroscopic hardening and plastic responses are characterized by avalanche distributions, which exhibit an algebraic decay with exponents between 5/2 and 2 different from those observed in mean-field fiber bundle models. We also derive analytically the phase diagram of a family of CDFBM which covers a large variety of potential avalanche size distributions. Our results provide a unified view of the statistics of breaking avalanches in fiber bundle models
Resumo:
The effect of initial conditions on the speed of propagating fronts in reaction-diffusion equations is examined in the framework of the Hamilton-Jacobi theory. We study the transition between quenched and nonquenched fronts both analytically and numerically for parabolic and hyperbolic reaction diffusion. Nonhomogeneous media are also analyzed and the effect of algebraic initial conditions is also discussed
Resumo:
Black-box optimization problems (BBOP) are de ned as those optimization problems in which the objective function does not have an algebraic expression, but it is the output of a system (usually a computer program). This paper is focussed on BBOPs that arise in the eld of insurance, and more speci cally in reinsurance problems. In this area, the complexity of the models and assumptions considered to de ne the reinsurance rules and conditions produces hard black-box optimization problems, that must be solved in order to obtain the optimal output of the reinsurance. The application of traditional optimization approaches is not possible in BBOP, so new computational paradigms must be applied to solve these problems. In this paper we show the performance of two evolutionary-based techniques (Evolutionary Programming and Particle Swarm Optimization). We provide an analysis in three BBOP in reinsurance, where the evolutionary-based approaches exhibit an excellent behaviour, nding the optimal solution within a fraction of the computational cost used by inspection or enumeration methods.
Resumo:
The occurrence of negative values for Fukui functions was studied through the electronegativity equalization method. Using algebraic relations between Fukui functions and different other conceptual DFT quantities on the one hand and the hardness matrix on the other hand, expressions were obtained for Fukui functions for several archetypical small molecules. Based on EEM calculations for large molecular sets, no negative Fukui functions were found
Resumo:
Two common methods of accounting for electric-field-induced perturbations to molecular vibration are analyzed and compared. The first method is based on a perturbation-theoretic treatment and the second on a finite-field treatment. The relationship between the two, which is not immediately apparent, is made by developing an algebraic formalism for the latter. Some of the higher-order terms in this development are documented here for the first time. As well as considering vibrational dipole polarizabilities and hyperpolarizabilities, we also make mention of the vibrational Stark effec
Resumo:
Introduction: Neuroimaging of the self focused on high-level mechanisms such as language, memory or imagery of the self. Recent evidence suggests that low-level mechanisms of multisensory and sensorimotor integration may play a fundamental role in encoding self-location and the first-person perspective (Blanke and Metzinger, 2009). Neurological patients with out-of body experiences (OBE) suffer from abnormal self-location and the first-person perspective due to a damage in the temporo-parietal junction (Blanke et al., 2004). Although self-location and the first-person perspective can be studied experimentally (Lenggenhager et al., 2009), the neural underpinnings of self-location have yet to be investigated. To investigate the brain network involved in self-location and first-person perspective we used visuo-tactile multisensory conflict, magnetic resonance (MR)-compatible robotics, and fMRI in study 1, and lesion analysis in a sample of 9 patients with OBE due to focal brain damage in study 2. Methods: Twenty-two participants saw a video showing either a person's back or an empty room being stroked (visual stimuli) while the MR-compatible robotic device stroked their back (tactile stimulation). Direction and speed of the seen stroking could either correspond (synchronous) or not (asynchronous) to those of the seen stroking. Each run comprised the four conditions according to a 2x2 factorial design with Object (Body, No-Body) and Synchrony (Synchronous, Asynchronous) as main factors. Self-location was estimated using the mental ball dropping (MBD; Lenggenhager et al., 2009). After the fMRI session participants completed a 6-item adapted from the original questionnaire created by Botvinick and Cohen (1998) and based on questions and data obtained by Lenggenhager et al. (2007, 2009). They were also asked to complete a questionnaire to disclose the perspective they adopted during the illusion. Response times (RTs) for the MBD and fMRI data were analyzed with a 3-way mixed model ANOVA with the in-between factor Perspective (up, down) and the two with-in factors Object (body, no-body) and Stroking (synchronous, asynchronous). Quantitative lesion analysis was performed using MRIcron (Rorden et al., 2007). We compared the distributions of brain lesions confirmed by multimodality imaging (Knowlton, 2004) in patients with OBE with those showing complex visual hallucinations involving people or faces, but without any disturbance of self-location and first person perspective. Nine patients with OBE were investigated. The control group comprised 8 patients. Structural imaging data were available for normalization and co-registration in all the patients. Normalization of each patient's lesion into the common MNI (Montreal Neurological Institute) reference space permitted simple, voxel-wise, algebraic comparisons to be made. Results: Even if in the scanner all participants were lying on their back and were facing upwards, analysis of perspective showed that half of the participants had the impression to be looking down at the virtual human body below them, despite any cues about their body position (Down-group). The other participants had the impression to be looking up at the virtual body above them (Up-group). Analysis of Q3 ("How strong was the feeling that the body you saw was you?") indicated stronger self-identification with the virtual body during the synchronous stroking. RTs in the MBD task confirmed these subjective data (significant 3-way interaction between perspective, object and stroking). fMRI results showed eight cortical regions where the BOLD signal was significantly different during at least one of the conditions resulting from the combination of Object and Stroking, relative to baseline: right and left temporo-parietal junction, right EBA, left middle occipito-temporal gyrus, left postcentral gyrus, right medial parietal lobe, bilateral medial occipital lobe (Fig 1). The activation patterns in right and left temporo-parietal junction and right EBA reflected changes in self-location and perspective as revealed by statistical analysis that was performed on the percentage of BOLD change with respect to the baseline. Statistical lesion overlap comparison (using nonparametric voxel based lesion symptom mapping) with respect to the control group revealed the right temporo-parietal junction, centered at the angular gyrus (Talairach coordinates x = 54, y =-52, z = 26; p>0.05, FDR corrected). Conclusions: The present questionnaire and behavioural results show that - despite the noisy and constraining MR environment) our participants had predictable changes in self-location, self-identification, and first-person perspective when robotic tactile stroking was applied synchronously with the robotic visual stroking. fMRI data in healthy participants and lesion data in patients with abnormal self-location and first-person perspective jointly revealed that the temporo-parietal cortex especially in the right hemisphere encodes these conscious experiences. We argue that temporo-parietal activity reflects the experience of the conscious "I" as embodied and localized within bodily space.
Resumo:
A `next' operator, s, is built on the set R1=(0,1]-{ 1-1/e} defining a partial order that, with the help of the axiom of choice, can be extended to a total order in R1. Besides, the orbits {sn(a)}nare all dense in R1 and are constituted by elements of the samearithmetical character: if a is an algebraic irrational of degreek all the elements in a's orbit are algebraic of degree k; if a istranscendental, all are transcendental. Moreover, the asymptoticdistribution function of the sequence formed by the elements in anyof the half-orbits is a continuous, strictly increasing, singularfunction very similar to the well-known Minkowski's ?(×) function.
Resumo:
O principal objetivo de um Planeamento de Experiências reside essencialmente na procura de relações entre variáveis e na comparação de níveis de fatores, recorrendo ao tratamento estatístico dos dados recolhidos. A utilização de blocos no Planeamento de Experiências é fundamental, pois permite reduzir ou eliminar a variabilidade introduzida por fatores que podem influenciar a experiência mas que não interessam e/ou não foram explicitamente incluídos durante o planeamento. Neste trabalho apresentamos os resultados do estudo e investigação dos Planos em Blocos Incompletos Equilibrados (BIBD), Planos em Blocos Incompletos Equilibrados com repetição de blocos (BIBDR) e Planos em Blocos Incompletos com blocos de diferentes dimensões (VBBD). Exploramos algumas propriedades e métodos de construção destes planos e ilustramos, sempre que possível, com exemplos. Tendo como base o planeamento em blocos, apresentamos uma aplicação dos BIBDR na área da Educação com o objetivo de comparar cinco domínios do pensamento algébrico de uma amostra de alunos do 1º ano do ensino superior em Cabo Verde. Para a análise dos dados da amostra foi utilizado o software R, versão 2.12.1. Pudemos constatar que existem diferenças significativas entre alguns dos domínios do pensamento algébrico, nomeadamente entre os domínios da Generalização da Aritmética e Tecnicismo Algébrico com os restantes domínios. Recomendamos a escolha de uma amostra mais representativa constituída por alunos de todas as instituições superiores de Cabo Verde.
Resumo:
The main purpose of an Experimental Design resides mainly in the search for relationships between variables and in comparing levels of factors, using statistical treatment of collected data. The use of blocks in Experimental Design is essential because it allows reducing or eliminating the variability introduced by factors that can influence the experience but are not of main interest and/or were not explicitly included during experiments. In this work we present the results of the study and research of Balanced Incomplete Block Designs (BIBD), Balanced Incomplete Block Designs with repeated blocks (BIBDR) and the Incomplete Blocks Designs with blocks with different dimensions (VBBD). We explore some properties and construction methods of such designs and illustrate, when possible, with examples. Based on Block Designs, we present an application of BIBDR in Education, with the aim of comparing five domains of algebraic thinking in a sample of 1st year students of higher education in Cape Verde. For the analysis of sample data, the software R was used, version 2.12.1. We observed that significant differences exist between some of the domains of algebraic thinking, especially among the domains of Generalization of Arithmetic and Algebraic Technicality with the remaining areas. For a more representative sample, we recommend a bigger sample consisting of students from all higher institutions of Cape Verde.
Resumo:
The main purpose of an Experimental Design resides mainly in the search for relationships between variables and in comparing levels of factors, using statistical treatment of collected data. The use of blocks in Experimental Design is essential because it allows reducing or eliminating the variability introduced by factors that can influence the experience but are not of main interest and/or were not explicitly included during experiments. In this work we present the results of the study and research of Balanced Incomplete Block Designs (BIBD), Balanced Incomplete Block Designs with repeated blocks (BIBDR) and the Incomplete Blocks Designs with blocks with different dimensions (VBBD). We explore some properties and construction methods of such designs and illustrate, when possible, with examples. Based on Block Designs, we present an application of BIBDR in Education, with the aim of comparing five domains of algebraic thinking in a sample of 1st year students of higher education in Cape Verde. For the analysis of sample data, the software R was used, version 2.12.1. We observed that significant differences exist between some of the domains of algebraic thinking, especially among the domains of Generalization of Arithmetic and Algebraic Technicality with the remaining areas. For a more representative sample, we recommend a bigger sample consisting of students from all higher institutions of Cape Verde.