A total order in [0,1] defined through a 'next' operator


Autoria(s): Paradís, Jaume; Viader, Pelegrí; Bibiloni, Lluís
Contribuinte(s)

Universitat Pompeu Fabra. Departament d'Economia i Empresa

Data(s)

15/09/2005

Resumo

A `next' operator, s, is built on the set R1=(0,1]-{ 1-1/e} defining a partial order that, with the help of the axiom of choice, can be extended to a total order in R1. Besides, the orbits {sn(a)}nare all dense in R1 and are constituted by elements of the samearithmetical character: if a is an algebraic irrational of degreek all the elements in a's orbit are algebraic of degree k; if a istranscendental, all are transcendental. Moreover, the asymptoticdistribution function of the sequence formed by the elements in anyof the half-orbits is a continuous, strictly increasing, singularfunction very similar to the well-known Minkowski's ?(×) function.

Identificador

http://hdl.handle.net/10230/291

Idioma(s)

eng

Direitos

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons

info:eu-repo/semantics/openAccess

<a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>

Palavras-Chave #Statistics, Econometrics and Quantitative Methods #total orders #pierce series #singular functions
Tipo

info:eu-repo/semantics/workingPaper