An Analysis of black-box optimization problems in reinsurance: evolutionary-based approaches


Autoria(s): Salcedo-Sanz, Sancho; Carro Calvo, L.; Claramunt Bielsa, M. Mercè, 1964-; Castañer, Anna; Mármol, Maite
Contribuinte(s)

Xarxa de Referència en Economia Aplicada (XREAP)

Data(s)

01/05/2013

Resumo

Black-box optimization problems (BBOP) are de ned as those optimization problems in which the objective function does not have an algebraic expression, but it is the output of a system (usually a computer program). This paper is focussed on BBOPs that arise in the eld of insurance, and more speci cally in reinsurance problems. In this area, the complexity of the models and assumptions considered to de ne the reinsurance rules and conditions produces hard black-box optimization problems, that must be solved in order to obtain the optimal output of the reinsurance. The application of traditional optimization approaches is not possible in BBOP, so new computational paradigms must be applied to solve these problems. In this paper we show the performance of two evolutionary-based techniques (Evolutionary Programming and Particle Swarm Optimization). We provide an analysis in three BBOP in reinsurance, where the evolutionary-based approaches exhibit an excellent behaviour, nding the optimal solution within a fraction of the computational cost used by inspection or enumeration methods.

Formato

34 p.

Identificador

http://hdl.handle.net/2072/253817

Idioma(s)

eng

Publicador

Xarxa de Referència en Economia Aplicada (XREAP)

Relação

XREAP;2013-04

Direitos

info:eu-repo/semantics/openAccess

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/

Fonte

RECERCAT (Dipòsit de la Recerca de Catalunya)

Palavras-Chave #Matemàtica actuarial #Reassegurances #Risc (Assegurances) #33 - Economia #336 - Finances. Banca. Moneda. Borsa
Tipo

info:eu-repo/semantics/workingPaper