968 resultados para random phase approximation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The proportion of older individuals in the driving population is predicted to increase in the next 50 years. This has important implications for driving safety as abilities which are important for safe driving, such as vision (which accounts for the majority of the sensory input required for driving), processing ability and cognition have been shown to decline with age. The current methods employed for screening older drivers upon re-licensure are also vision based. This study, which investigated social, behavioural and professional aspects involved with older drivers, aimed to determine: (i) if the current visual standards in place for testing upon re-licensure are effective in reducing the older driver fatality rate in Australia; (ii) if the recommended visual standards are actually implemented as part of the testing procedures by Australian optometrists; and (iii) if there are other non-standardised tests which may be better at predicting the on-road incident-risk (including near misses and minor incidents) in older drivers than those tests recommended in the standards. Methods: For the first phase of the study, state-based age- and gender-stratified numbers of older driver fatalities for 2000-2003 were obtained from the Australian Transportation Safety Bureau database. Poisson regression analyses of fatality rates were considered by renewal frequency and jurisdiction (as separate models), adjusting for possible confounding variables of age, gender and year. For the second phase, all practising optometrists in Australia were surveyed on the vision tests they conduct in consultations relating to driving and their knowledge of vision requirements for older drivers. Finally, for the third phase of the study to investigate determinants of on-road incident risk, a stratified random sample of 600 Brisbane residents aged 60 years and were selected and invited to participate using an introductory letter explaining the project requirements. In order to capture the number and type of road incidents which occurred for each participant over 12 months (including near misses and minor incidents), an important component of the prospective research study was the development and validation of a driving diary. The diary was a tool in which incidents that occurred could be logged at that time (or very close in time to which they occurred) and thus, in comparison with relying on participant memory over time, recall bias of incident occurrence was minimised. Association between all visual tests, cognition and scores obtained for non-standard functional tests with retrospective and prospective incident occurrence was investigated. Results: In the first phase,rivers aged 60-69 years had a 33% lower fatality risk (Rate Ratio [RR] = 0.75, 95% CI 0.32-1.77) in states with vision testing upon re-licensure compared with states with no vision testing upon re-licensure, however, because the CIs are wide, crossing 1.00, this result should be regarded with caution. However, overall fatality rates and fatality rates for those aged 70 years and older (RR=1.17, CI 0.64-2.13) did not differ between states with and without license renewal procedures, indicating no apparent benefit in vision testing legislation. For the second phase of the study, nearly all optometrists measured visual acuity (VA) as part of a vision assessment for re-licensing, however, 20% of optometrists did not perform any visual field (VF) testing and only 20% routinely performed automated VF on older drivers, despite the standards for licensing advocating automated VF as part of the vision standard. This demonstrates the need for more effective communication between the policy makers and those responsible for carrying out the standards. It may also indicate that the overall higher driver fatality rate in jurisdictions with vision testing requirements is resultant as the tests recommended by the standards are only partially being conducted by optometrists. Hence a standardised protocol for the screening of older drivers for re-licensure across the nation must be established. The opinions of Australian optometrists with regard to the responsibility of reporting older drivers who fail to meet the licensing standards highlighted the conflict between maintaining patient confidentiality or upholding public safety. Mandatory reporting requirements of those drivers who fail to reach the standards necessary for driving would minimise potential conflict between the patient and their practitioner, and help maintain patient trust and goodwill. The final phase of the PhD program investigated the efficacy of vision, functional and cognitive tests to discriminate between at-risk and safe older drivers. Nearly 80% of the participants experienced an incident of some form over the prospective 12 months, with the total incident rate being 4.65/10 000 km. Sixty-three percent reported having a near miss and 28% had a minor incident. The results from the prospective diary study indicate that the current vision screening tests (VA and VF) used for re-licensure do not accurately predict older drivers who are at increased odds of having an on-road incident. However, the variation in visual measurements of the cohort was narrow, also affecting the results seen with the visual functon questionnaires. Hence a larger cohort with greater variability should be considered for a future study. A slightly lower cognitive level (as measured with the Mini-Mental State Examination [MMSE]) did show an association with incident involvement as did slower reaction time (RT), however the Useful-Field-of-View (UFOV) provided the most compelling results of the study. Cut-off values of UFOV processing (>23.3ms), divided attention (>113ms), selective attention (>258ms) and overall score (moderate/ high/ very high risk) were effective in determining older drivers at increased odds of having any on-road incident and the occurrence of minor incidents. Discussion: The results have shown that for the 60-69 year age-group, there is a potential benefit in testing vision upon licence renewal. However, overall fatality rates and fatality rates for those aged 70 years and older indicated no benefit in vision testing legislation and suggests a need for inclusion of screening tests which better predict on-road incidents. Although VA is routinely performed by Australian optometrists on older drivers renewing their licence, VF is not. Therefore there is a need for a protocol to be developed and administered which would result in standardised methods conducted throughout the nation for the screening of older drivers upon re-licensure. Communication between the community, policy makers and those conducting the protocol should be maximised. By implementing a standardised screening protocol which incorporates a level of mandatory reporting by the practitioner, the ethical dilemma of breaching patient confidentiality would also be resolved. The tests which should be included in this screening protocol, however, cannot solely be ones which have been implemented in the past. In this investigation, RT, MMSE and UFOV were shown to be better determinants of on-road incidents in older drivers than VA and VF, however, as previously mentioned, there was a lack of variability in visual status within the cohort. Nevertheless, it is the recommendation from this investigation, that subject to appropriate sensitivity and specificity being demonstrated in the future using a cohort with wider variation in vision, functional performance and cognition, these tests of cognition and information processing should be added to the current protocol for the screening of older drivers which may be conducted at licensing centres across the nation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identification of attractors is one of the key tasks in studies of neurobiological coordination from a dynamical systems perspective, with a considerable body of literature resulting from this task. However, with regards to typical movement models investigated, the overwhelming majority of actions studied previously belong to the class of continuous, rhythmical movements. In contrast, very few studies have investigated coordination of discrete movements, particularly multi-articular discrete movements. In the present study, we investigated phase transition behavior in a basketball throwing task where participants were instructed to shoot at the basket from different distances. Adopting the ubiquitous scaling paradigm, throwing distance was manipulated as a candidate control parameter. Using a cluster analysis approach, clear phase transitions between different movement patterns were observed in performance of only two of eight participants. The remaining participants used a single movement pattern and varied it according to throwing distance, thereby exhibiting hysteresis effects. Results suggested that, in movement models involving many biomechanical degrees of freedom in degenerate systems, greater movement variation across individuals is available for exploitation. This observation stands in contrast to movement variation typically observed in studies using more constrained bi-manual movement models. This degenerate system behavior provides new insights and poses fresh challenges to the dynamical systems theoretical approach, requiring further research beyond conventional movement models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Random Indexing K-tree is the combination of two algorithms suited for large scale document clustering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix function approximation is a current focus of worldwide interest and finds application in a variety of areas of applied mathematics and statistics. In this thesis we focus on the approximation of A^(-α/2)b, where A ∈ ℝ^(n×n) is a large, sparse symmetric positive definite matrix and b ∈ ℝ^n is a vector. In particular, we will focus on matrix function techniques for sampling from Gaussian Markov random fields in applied statistics and the solution of fractional-in-space partial differential equations. Gaussian Markov random fields (GMRFs) are multivariate normal random variables characterised by a sparse precision (inverse covariance) matrix. GMRFs are popular models in computational spatial statistics as the sparse structure can be exploited, typically through the use of the sparse Cholesky decomposition, to construct fast sampling methods. It is well known, however, that for sufficiently large problems, iterative methods for solving linear systems outperform direct methods. Fractional-in-space partial differential equations arise in models of processes undergoing anomalous diffusion. Unfortunately, as the fractional Laplacian is a non-local operator, numerical methods based on the direct discretisation of these equations typically requires the solution of dense linear systems, which is impractical for fine discretisations. In this thesis, novel applications of Krylov subspace approximations to matrix functions for both of these problems are investigated. Matrix functions arise when sampling from a GMRF by noting that the Cholesky decomposition A = LL^T is, essentially, a `square root' of the precision matrix A. Therefore, we can replace the usual sampling method, which forms x = L^(-T)z, with x = A^(-1/2)z, where z is a vector of independent and identically distributed standard normal random variables. Similarly, the matrix transfer technique can be used to build solutions to the fractional Poisson equation of the form ϕn = A^(-α/2)b, where A is the finite difference approximation to the Laplacian. Hence both applications require the approximation of f(A)b, where f(t) = t^(-α/2) and A is sparse. In this thesis we will compare the Lanczos approximation, the shift-and-invert Lanczos approximation, the extended Krylov subspace method, rational approximations and the restarted Lanczos approximation for approximating matrix functions of this form. A number of new and novel results are presented in this thesis. Firstly, we prove the convergence of the matrix transfer technique for the solution of the fractional Poisson equation and we give conditions by which the finite difference discretisation can be replaced by other methods for discretising the Laplacian. We then investigate a number of methods for approximating matrix functions of the form A^(-α/2)b and investigate stopping criteria for these methods. In particular, we derive a new method for restarting the Lanczos approximation to f(A)b. We then apply these techniques to the problem of sampling from a GMRF and construct a full suite of methods for sampling conditioned on linear constraints and approximating the likelihood. Finally, we consider the problem of sampling from a generalised Matern random field, which combines our techniques for solving fractional-in-space partial differential equations with our method for sampling from GMRFs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider the variable-order nonlinear fractional diffusion equation View the MathML source where xRα(x,t) is a generalized Riesz fractional derivative of variable order View the MathML source and the nonlinear reaction term f(u,x,t) satisfies the Lipschitz condition |f(u1,x,t)-f(u2,x,t)|less-than-or-equals, slantL|u1-u2|. A new explicit finite-difference approximation is introduced. The convergence and stability of this approximation are proved. Finally, some numerical examples are provided to show that this method is computationally efficient. The proposed method and techniques are applicable to other variable-order nonlinear fractional differential equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major focus of research in nanotechnology is the development of novel, high throughput techniques for fabrication of arbitrarily shaped surface nanostructures of sub 100 nm to atomic scale. A related pursuit is the development of simple and efficient means for parallel manipulation and redistribution of adsorbed atoms, molecules and nanoparticles on surfaces – adparticle manipulation. These techniques will be used for the manufacture of nanoscale surface supported functional devices in nanotechnologies such as quantum computing, molecular electronics and lab-on-achip, as well as for modifying surfaces to obtain novel optical, electronic, chemical, or mechanical properties. A favourable approach to formation of surface nanostructures is self-assembly. In self-assembly, nanostructures are grown by aggregation of individual adparticles that diffuse by thermally activated processes on the surface. The passive nature of this process means it is generally not suited to formation of arbitrarily shaped structures. The self-assembly of nanostructures at arbitrary positions has been demonstrated, though these have typically required a pre-patterning treatment of the surface using sophisticated techniques such as electron beam lithography. On the other hand, a parallel adparticle manipulation technique would be suited for directing the selfassembly process to occur at arbitrary positions, without the need for pre-patterning the surface. There is at present a lack of techniques for parallel manipulation and redistribution of adparticles to arbitrary positions on the surface. This is an issue that needs to be addressed since these techniques can play an important role in nanotechnology. In this thesis, we propose such a technique – thermal tweezers. In thermal tweezers, adparticles are redistributed by localised heating of the surface. This locally enhances surface diffusion of adparticles so that they rapidly diffuse away from the heated regions. Using this technique, the redistribution of adparticles to form a desired pattern is achieved by heating the surface at specific regions. In this project, we have focussed on the holographic implementation of this approach, where the surface is heated by holographic patterns of interfering pulsed laser beams. This implementation is suitable for the formation of arbitrarily shaped structures; the only condition is that the shape can be produced by holographic means. In the simplest case, the laser pulses are linearly polarised and intersect to form an interference pattern that is a modulation of intensity along a single direction. Strong optical absorption at the intensity maxima of the interference pattern results in approximately a sinusoidal variation of the surface temperature along one direction. The main aim of this research project is to investigate the feasibility of the holographic implementation of thermal tweezers as an adparticle manipulation technique. Firstly, we investigate theoretically the surface diffusion of adparticles in the presence of sinusoidal modulation of the surface temperature. Very strong redistribution of adparticles is predicted when there is strong interaction between the adparticle and the surface, and the amplitude of the temperature modulation is ~100 K. We have proposed a thin metallic film deposited on a glass substrate heated by interfering laser beams (optical wavelengths) as a means of generating very large amplitude of surface temperature modulation. Indeed, we predict theoretically by numerical solution of the thermal conduction equation that amplitude of the temperature modulation on the metallic film can be much greater than 100 K when heated by nanosecond pulses with an energy ~1 mJ. The formation of surface nanostructures of less than 100 nm in width is predicted at optical wavelengths in this implementation of thermal tweezers. Furthermore, we propose a simple extension to this technique where spatial phase shift of the temperature modulation effectively doubles or triples the resolution. At the same time, increased resolution is predicted by reducing the wavelength of the laser pulses. In addition, we present two distinctly different, computationally efficient numerical approaches for theoretical investigation of surface diffusion of interacting adparticles – the Monte Carlo Interaction Method (MCIM) and the random potential well method (RPWM). Using each of these approaches we have investigated thermal tweezers for redistribution of both strongly and weakly interacting adparticles. We have predicted that strong interactions between adparticles can increase the effectiveness of thermal tweezers, by demonstrating practically complete adparticle redistribution into the low temperature regions of the surface. This is promising from the point of view of thermal tweezers applied to directed self-assembly of nanostructures. Finally, we present a new and more efficient numerical approach to theoretical investigation of thermal tweezers of non-interacting adparticles. In this approach, the local diffusion coefficient is determined from solution of the Fokker-Planck equation. The diffusion equation is then solved numerically using the finite volume method (FVM) to directly obtain the probability density of adparticle position. We compare predictions of this approach to those of the Ermak algorithm solution of the Langevin equation, and relatively good agreement is shown at intermediate and high friction. In the low friction regime, we predict and investigate the phenomenon of ‘optimal’ friction and describe its occurrence due to very long jumps of adparticles as they diffuse from the hot regions of the surface. Future research directions, both theoretical and experimental are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer microspheres loaded with bioactive particles, biomolecules, proteins, and/or growth factors play important roles in tissue engineering, drug delivery, and cell therapy. The conventional double emulsion method and a new method of electrospraying into liquid nitrogen were used to prepare bovine serum albumin (BAS)-loaded poly(lactic-co-glycolic acid) (PLGA) porous microspheres. The particle size, the surface morphology and the internal porous structure of the microspheres were observed using scanning electron microscopy (SEM). The loading efficiency, the encapsulation efficiency, and the release profile of the BSA-loaded PLGA microspheres were measured and studied. It was shown that the microspheres from double emulsion had smaller particle sizes (3-50 m), a less porous structure, a poor loading efficiency (5.2 %), and a poor encapsulation efficiency (43.5%). However, the microspheres from the electrospraying into liquid nitrogen had larger particle sizes (400-600 m), a highly porous structure, a high loading efficiency (12.2%), and a high encapsulation efficiency (93.8%). Thus the combination of electrospraying with freezing in liquid nitrogen and subsequent freeze drying represented a suitable way to produce polymer microspheres for effective loading and sustained release of proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the "slow" phase of pulmonary oxygen uptake (Vo2) appears to represent energetic processes in contracting muscle, electromyographic evidence tends not to support this. The present study assessed normalized integrated electromyographic (NIEMG) activity in eight muscles that act about the hip, knee and ankle during 8 min of moderate (ventilatory threshold) cycling in six male cyclists. (Vo2) was measured breath by breath during four repeated trials at each of the two intensities. Moderate and very heavy exercise followed a 4-min period of light exercise (50 W). During moderate exercise the slow (Vo2) phase was absent and NIEMG in all muscles did not increase after the first minute of exercise. During very heavy exercise, the slow phase emerged (time delay=58 ± 16 s) and increased progressively (time constant=120 ± 35 s) to an amplitude (0.83 ± 0.16 L/min) that was approximately 21% of the total (Vo2) response. This slow (Vo2) phase coincided with a significant increase in NIEMG in most muscles, and differences in NIEMG activities between the two intensities revealed "slow" muscle activation profiles that differed between muscles in terms of the onset, amplitude and shape of these profiles. This supports the hypothesis that the slow (Vo2) phase is a function of these different slow muscle activation profiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Urban Research Program (URP) was established in 2003 as strategic research and community engagement initiative of Griffith University. The strategic foci of the Urban Research Program are research and advocacy in an urban regional context. The Urban Research Program seeks to improve understanding of, and develop innovative responses to Australia's urban challenges and opportunities by providing training assistance. The authors aim to make the results of their research and advocacy work available as freely and widely as possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid-phase organic chemistry has rapidly expanded in the last decade, and, as a consequence, so has the need for the development of supports that can withstand the extreme conditions required to facilitate some reactions. The authors here prepare a thermally stable, grafted fluoropolymer support (see Figure for an example) in three solvents, and found that the penetration of the graft was greatest in dichloromethane.