935 resultados para kinetic resolution of activated cyclopropanes
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Urban solid residues are constituted of food remaining, grass leaves, fruit peelings, paper, cardboard, rubber, plastic, etc. The organic fraction formed represents about 50% during the decomposition yields biogas and leachate, which are sources of pollution. Residue samples were collected from the landfill in different and cells from several ages and the corresponding leachate, both after treatments, were submitted to thermal analysis. Kinetic parameters were determined using Flynn-Wall-Ozawa method. The linear relation between the two kinetic parameters (ln A and E) was verified for organic residue urban's samples, but not for leachate's sample. The occurred difference can be attributed to the constituents present in leachate.
Resumo:
The non-isothermal data given by TG curves for poly(3-hydroxybutyrate) (PHB) were studied in order to obtain a consistent kinetic model that better represents the PHB thermal decomposition. Thus, data obtained from the dynamic TG curves were suitably managed in order to obtain the Arrhenius kinetic parameter E according to the isoconversional F-W-O method. Once the E parameters is found, a suitable logA and kinetic model (f(alpha)) could be calculated. Hence, the kinetic triplet (E +/- SD, logA +/- SD and f(alpha)) obtained for the thermal decomposition of PHB under non-isothermal conditions was E=152 +/- 4 kJ mol(-1), logA=14.1 +/- 0.2 s(-1) for the kinetic model, and the autocatalytic model function was: f(alpha)=alpha(m)(1-alpha)(n)=alpha(0.42)(1-alpha)(0.56).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Submandibular glands of male rats were homogenized with 33 mM sodium potassium phosphate buffer, pH 6.5, containing 1 mM MgCl2 and 0.1 mM DTT and purified with ammonium sulphate, phosphocellulose chromatography, eluted with KC1 0.5 M, followed by Blue Sepharose CL-6B chromatography, eluted with NADH 0.5 mM. The enzyme kepts stable for 60 days when stored at -15-degrees-C in 33 mM phosphate buffer. In other experiment the enzyme was purified by oxamate-agarose chromatography from a crude extract of submandibular gland and the results obtained were better than by phosphocellulose and Sepharose CL-6B chromatography. The Km values for pyruvate. NADH, lactate and NAD+ were established. Sodium oxamate at 0.1 and 0.9 mM concentrations inhibited the LDH activity by 40 and 85%, respectively (competitive); with sodium oxalate the inhibition was of 30% (uncompetitive) and with 3-acetyl pyridine adenine dinucleotide was 80%.
Resumo:
Pectinmethylesterase (PME) was extracted from guava fruit (Psidium guajava L.), cultivar Paluma, by 70% ammonium sulphate saturation and partially purified by gel filtration on Sephadex G100. Gel filtration showed PME isoenzymes with different values of molecular mass. Two samples were examined: concPME (70% saturation by ammonium sulphate) and Iso4 PME (one of the isoforms from gel filtration with the greatest specific activity). Optimum pH of the enzyme (for both samples) was 8.5 and optimum temperature ranged from 75 and 85 degrees C. The optimum sodium chloride concentration was 0.15 M. The K-M and V-max ranged from 0.32 to 0.23 mg m1(-1) and 244 to 53.2 mu mol/min, respectively, for concPME and Iso4PME. The activation energies (E-a) were 64.5 and 103 kJ/mol, respectively, for concPME and Iso4PME. Guava PME, cv Paluma, is a very thermostable enzyme, showing great heat stability at all temperatures studied. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In five male cirrhotic patients (Child A) and in four age- and sex-matched healthy control subjects, whole-body protein turnover was measured using a single oral dose of N-15-glycine as a tracer and urinary ammonia as end product. Subjects were studied in the fasting and feeding state, with different levels of protein and energy intake. The patients were underweight and presented lower plasma transthyretin and retinol-binding protein levels. When compared with controls, the kinetic studies showed patients to be hypometabolic in the fasting (Do) state and with the control diet [D-1 = (0.85 g of protein/154 kJ). kg(-1). day(-1)]. However, when corrected by body weight, the kinetic differences between groups disappeared, whereas the N-retention in the feeding state showed better results for the patients due mainly to their efficient breakdown decrease. When fed high-level protein or energy diets [D-2 = (0.9 g protein/195 kJ) and D-3 = (1.56 g protein/158 kJ). kg(-1). day(-1)], the patients showed D-0 = D-1 = D-2 < D-3 for N-flux and (D-0 = D-1) < D-3 (D-2 is intermediary) for protein synthesis. Thus, the present data suggest that the remaining mass of the undernourished mild cirrhotic patients has fairly good protein synthesis activity and also that protein, rather than energy intake, would be the limiting factor for increasing their whole-body protein synthesis.
Resumo:
The D allozyme of placental alkaline phosphatase (PLAP) displays enzymatic properties at variance with those of the common PLAP allozymes. We have deduced the amino acid sequence of the PLAP D allele by PCR cloning of its gene, ALPP Two coding substitutions were found in comparison With the cDNA of the common PLAP F allele, i.e., 692C>G and 1352A>G, which translate into a P209R and E429G substitution. A single nucleotide primer extension (SNuPE) assay was developed using PCR primers that enable the amplification of a 1.9 kb PLAP fragment. Extension primers were then used on this PCR fragment to detect the 692C>G and 1352A>G substitution. The SNuPE assay on these two nucleotide substitutions enabled us to distinguish the PLAP F and D alleles from the PLAP S/I alleles. Functional studies on the D allozyme were made possible by constructing and expressing a PLAP D cDNA, i.e., [Arg209, Gly429] PLAP, into wildtype Chinese hamster ovary cells. We determined the k(cat) and K-m, of the PLAP S, F. and D allozymes using the non,physiological substrate p-nitrophenylphosphate at an optimal pH (9.8) as well as two physiological substrates, i.e., pyridoxal-5'-phosphate and inorganic pyrophosphate at physiological pH (7.5). We found that the biochemical properties of the D allozyme of PLAP are significantly different from those of the common PLAP allozymes. These biochemical findings suggest that a suboptimal enzymatic function by the PLAP D allozyme may be the basis for the apparent negative selective pressure of the PLAP D allele. The development of the SNuPE assay will enable us to test the hypothesis that the PLAP D allele is subjected to intrauterine selection by examining genomic DNA from statistically informative population samples. Hum Mutat 19:258-267, 2002. (C) 2002 Wiley-Liss, Inc.
Resumo:
The AlMCM-41 material with Si/Al=50 was synthesized by hydrothermal method, using cethyltrimethylammonium as template. The protonic H-AlMCM-41 acid form was obtained by ion exchange with ammonium chloride solution and subsequent calcination. The characterization of the material by several techniques showed that a good-quality MCM-41 material was obtained. High-density polyethylene (HDPE) has been submitted to thermal degradation alone, and in presence of the exchanged H-AlMCM-41 catalyst at a concentration of 1: 1 in mass (H-AlMCM-41/HDPE). The reactor was connected on line to a gas chromatograph connected to a mass spectrometer. This process was evaluated by thermogravimetry (TG), from 350 to 600degreesC, under helium dynamic atmosphere, with heating rates of 5.0; 10.0 and 20.0 degreesC/min. From TG curves, the activation energy, calculated using a multiple heating rate integral kinetic method, decreased from 225.5 KJ.mol(-1), for the pure polymer (HDPE), to 184.7 KJ.mol(-1), in the presence of the catalyst (H-AlMCM-41/HDPE).