790 resultados para constructive heuristic algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: This pilot study aims at assessing Constructive Thinking in a sample of adolescent offenders and in a normative sample of adolescents. Method: 66 adolescent offenders (12-18 years) were compared to 540 control adolescents on the different subscales of the "Constructive Thinking Inventory". Results and Conclusion: Adolescent offenders show a less efficient Constructive Thinking: they show cognitive styles that may hamper their ability to take appropriate decisions when facing stressful situations, increasing self-defeating behaviors. Interventions may focus on improving adequate coping with stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several studies have reported high performance of simple decision heuristics multi-attribute decision making. In this paper, we focus on situations where attributes are binary and analyze the performance of Deterministic-Elimination-By-Aspects (DEBA) and similar decision heuristics. We consider non-increasing weights and two probabilistic models for the attribute values: one where attribute values are independent Bernoulli randomvariables; the other one where they are binary random variables with inter-attribute positive correlations. Using these models, we show that good performance of DEBA is explained by the presence of cumulative as opposed to simple dominance. We therefore introduce the concepts of cumulative dominance compliance and fully cumulative dominance compliance and show that DEBA satisfies those properties. We derive a lower bound with which cumulative dominance compliant heuristics will choose a best alternative and show that, even with many attributes, this is not small. We also derive an upper bound for the expected loss of fully cumulative compliance heuristics and show that this is moderateeven when the number of attributes is large. Both bounds are independent of the values ofthe weights.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Generalized Assignment Problem consists in assigning a setof tasks to a set of agents with minimum cost. Each agent hasa limited amount of a single resource and each task must beassigned to one and only one agent, requiring a certain amountof the resource of the agent. We present new metaheuristics forthe generalized assignment problem based on hybrid approaches.One metaheuristic is a MAX-MIN Ant System (MMAS), an improvedversion of the Ant System, which was recently proposed byStutzle and Hoos to combinatorial optimization problems, and itcan be seen has an adaptive sampling algorithm that takes inconsideration the experience gathered in earlier iterations ofthe algorithm. Moreover, the latter heuristic is combined withlocal search and tabu search heuristics to improve the search.A greedy randomized adaptive search heuristic (GRASP) is alsoproposed. Several neighborhoods are studied, including one basedon ejection chains that produces good moves withoutincreasing the computational effort. We present computationalresults of the comparative performance, followed by concludingremarks and ideas on future research in generalized assignmentrelated problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a Pyramidal Classification Algorithm,which together with an appropriate aggregation index producesan indexed pseudo-hierarchy (in the strict sense) withoutinversions nor crossings. The computer implementation of thealgorithm makes it possible to carry out some simulation testsby Monte Carlo methods in order to study the efficiency andsensitivity of the pyramidal methods of the Maximum, Minimumand UPGMA. The results shown in this paper may help to choosebetween the three classification methods proposed, in order toobtain the classification that best fits the original structureof the population, provided we have an a priori informationconcerning this structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the issue of the optimal behaviour of the Lender of Last Resort (LOLR) in its microeconomic role regarding individual financial institutions in distress. It has been argued that the LOLR should not intervene at the microeconomic level and let any defaulting institution face the market discipline, as it will be confronted with the consequences of the risks it has taken. By considering a simple costbenefit analysis we show that this position may lack a sufficient foundation. We establish that, instead, uder reasonable assumptions, the optimal policy has to be conditional on the amount of uninsured debt issued by the defaulting bank. Yet in equilibrium, because the rescue policy is costly, the LOLR will not rescue all the banks that fulfill the uninsured debt requirement condition, but will follow a mixed strategy. This we interpret as the confirmation of the "creative ambiguity" principle, perfectly in line with the central bankers claim that it is efficient for them to have discretion in lending to individual institutions. Alternatively, in other cases, when the social cost of a bank's bankruptcy is too high, it is optimal for the LOLR to bail out the insititution, and this gives support to the "too big to fail" policy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In models where privately informed agents interact, agents may need to formhigher order expectations, i.e. expectations of other agents' expectations. This paper develops a tractable framework for solving and analyzing linear dynamic rational expectationsmodels in which privately informed agents form higher order expectations. The frameworkis used to demonstrate that the well-known problem of the infinite regress of expectationsidentified by Townsend (1983) can be approximated to an arbitrary accuracy with a finitedimensional representation under quite general conditions. The paper is constructive andpresents a fixed point algorithm for finding an accurate solution and provides weak conditions that ensure that a fixed point exists. To help intuition, Singleton's (1987) asset pricingmodel with disparately informed traders is used as a vehicle for the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a simple randomized procedure for the prediction of a binary sequence. The algorithm uses ideas from recent developments of the theory of the prediction of individual sequences. We show that if thesequence is a realization of a stationary and ergodic random process then the average number of mistakes converges, almost surely, to that of the optimum, given by the Bayes predictor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a mathematical programming approach for the classicalPSPACE - hard restless bandit problem in stochastic optimization.We introduce a hierarchy of n (where n is the number of bandits)increasingly stronger linear programming relaxations, the lastof which is exact and corresponds to the (exponential size)formulation of the problem as a Markov decision chain, while theother relaxations provide bounds and are efficiently computed. Wealso propose a priority-index heuristic scheduling policy fromthe solution to the first-order relaxation, where the indices aredefined in terms of optimal dual variables. In this way wepropose a policy and a suboptimality guarantee. We report resultsof computational experiments that suggest that the proposedheuristic policy is nearly optimal. Moreover, the second-orderrelaxation is found to provide strong bounds on the optimalvalue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on judgment and decision making presents a confusing picture of human abilities. For example, much research has emphasized the dysfunctional aspects of judgmental heuristics, and yet, other findings suggest that these can be highly effective. A further line of research has modeled judgment as resulting from as if linear models. This paper illuminates the distinctions in these approaches by providing a common analytical framework based on the central theoretical premise that understanding human performance requires specifying how characteristics of the decision rules people use interact with the demands of the tasks they face. Our work synthesizes the analytical tools of lens model research with novel methodology developed to specify the effectiveness of heuristics in different environments and allows direct comparisons between the different approaches. We illustrate with both theoretical analyses and simulations. We further link our results to the empirical literature by a meta-analysis of lens model studies and estimate both human andheuristic performance in the same tasks. Our results highlight the trade-off betweenlinear models and heuristics. Whereas the former are cognitively demanding, the latterare simple to use. However, they require knowledge and thus maps of when andwhich heuristic to employ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper compares two well known scan matching algorithms: the MbICP and the pIC. As a result of the study, it is proposed the MSISpIC, a probabilistic scan matching algorithm for the localization of an Autonomous Underwater Vehicle (AUV). The technique uses range scans gathered with a Mechanical Scanning Imaging Sonar (MSIS), and the robot displacement estimated through dead-reckoning with the help of a Doppler Velocity Log (DVL) and a Motion Reference Unit (MRU). The proposed method is an extension of the pIC algorithm. Its major contribution consists in: 1) using an EKF to estimate the local path traveled by the robot while grabbing the scan as well as its uncertainty and 2) proposing a method to group into a unique scan, with a convenient uncertainty model, all the data grabbed along the path described by the robot. The algorithm has been tested on an AUV guided along a 600m path within a marina environment with satisfactory results

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nominal Unification is an extension of first-order unification where terms can contain binders and unification is performed modulo α equivalence. Here we prove that the existence of nominal unifiers can be decided in quadratic time. First, we linearly-reduce nominal unification problems to a sequence of freshness and equalities between atoms, modulo a permutation, using ideas as Paterson and Wegman for first-order unification. Second, we prove that solvability of these reduced problems may be checked in quadràtic time. Finally, we point out how using ideas of Brown and Tarjan for unbalanced merging, we could solve these reduced problems more efficiently

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary Background: We previously derived a clinical prognostic algorithm to identify patients with pulmonary embolism (PE) who are at low-risk of short-term mortality who could be safely discharged early or treated entirely in an outpatient setting. Objectives: To externally validate the clinical prognostic algorithm in an independent patient sample. Methods: We validated the algorithm in 983 consecutive patients prospectively diagnosed with PE at an emergency department of a university hospital. Patients with none of the algorithm's 10 prognostic variables (age >/= 70 years, cancer, heart failure, chronic lung disease, chronic renal disease, cerebrovascular disease, pulse >/= 110/min., systolic blood pressure < 100 mm Hg, oxygen saturation < 90%, and altered mental status) at baseline were defined as low-risk. We compared 30-day overall mortality among low-risk patients based on the algorithm between the validation and the original derivation sample. We also assessed the rate of PE-related and bleeding-related mortality among low-risk patients. Results: Overall, the algorithm classified 16.3% of patients with PE as low-risk. Mortality at 30 days was 1.9% among low-risk patients and did not differ between the validation and the original derivation sample. Among low-risk patients, only 0.6% died from definite or possible PE, and 0% died from bleeding. Conclusions: This study validates an easy-to-use, clinical prognostic algorithm for PE that accurately identifies patients with PE who are at low-risk of short-term mortality. Low-risk patients based on our algorithm are potential candidates for less costly outpatient treatment.