Restless bandits, linear programming relaxations and a primal-dual index heuristic


Autoria(s): Bertsimas, Dimitris; Niño-Mora, José
Contribuinte(s)

Universitat Pompeu Fabra. Departament d'Economia i Empresa

Data(s)

15/09/2005

Resumo

We develop a mathematical programming approach for the classicalPSPACE - hard restless bandit problem in stochastic optimization.We introduce a hierarchy of n (where n is the number of bandits)increasingly stronger linear programming relaxations, the lastof which is exact and corresponds to the (exponential size)formulation of the problem as a Markov decision chain, while theother relaxations provide bounds and are efficiently computed. Wealso propose a priority-index heuristic scheduling policy fromthe solution to the first-order relaxation, where the indices aredefined in terms of optimal dual variables. In this way wepropose a policy and a suboptimality guarantee. We report resultsof computational experiments that suggest that the proposedheuristic policy is nearly optimal. Moreover, the second-orderrelaxation is found to provide strong bounds on the optimalvalue.

Identificador

http://hdl.handle.net/10230/935

Idioma(s)

eng

Direitos

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons

info:eu-repo/semantics/openAccess

<a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>

Palavras-Chave #Microeconomics #stochastic scheduling #bandit problems #resource allocation #dynamic programming
Tipo

info:eu-repo/semantics/workingPaper