An Efficient Nominal Unification Algorithm


Autoria(s): Levy, Jordi; Villaret i Ausellé, Mateu
Data(s)

03/10/2013

Resumo

Nominal Unification is an extension of first-order unification where terms can contain binders and unification is performed modulo α equivalence. Here we prove that the existence of nominal unifiers can be decided in quadratic time. First, we linearly-reduce nominal unification problems to a sequence of freshness and equalities between atoms, modulo a permutation, using ideas as Paterson and Wegman for first-order unification. Second, we prove that solvability of these reduced problems may be checked in quadràtic time. Finally, we point out how using ideas of Brown and Tarjan for unbalanced merging, we could solve these reduced problems more efficiently

Identificador

http://hdl.handle.net/10256/8404

Idioma(s)

eng

Publicador

Dagstuhl Publishing

Direitos

Attribution-NonCommercial-NoDerivs 3.0 Spain

<a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>

Palavras-Chave #Algorismes computacionals #Computer algorithms #Lògica matemàtica #Logic, Symbolic and mathematical #Complexitat computacional #Computational complexity
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion