874 resultados para VIRTUAL-REALITY
Resumo:
The representation of business process models has been a continuing research topic for many years now. However, many process model representations have not developed beyond minimally interactive 2D icon-based representations of directed graphs and networks, with little or no annotation for information overlays. In addition, very few of these representations have undergone a thorough analysis or design process with reference to psychological theories on data and process visualization. This dearth of visualization research, we believe, has led to problems with BPM uptake in some organizations, as the representations can be difficult for stakeholders to understand, and thus remains an open research question for the BPM community. In addition, business analysts and process modeling experts themselves need visual representations that are able to assist with key BPM life cycle tasks in the process of generating optimal solutions. With the rise of desktop computers and commodity mobile devices capable of supporting rich interactive 3D environments, we believe that much of the research performed in computer human interaction, virtual reality, games and interactive entertainment have much potential in areas of BPM; to engage, provide insight, and to promote collaboration amongst analysts and stakeholders alike. We believe this is a timely topic, with research emerging in a number of places around the globe, relevant to this workshop. This is the second TAProViz workshop being run at BPM. The intention this year is to consolidate on the results of last year's successful workshop by further developing this important topic, identifying the key research topics of interest to the BPM visualization community.
Resumo:
Process models are often used to visualize and communicate workflows to involved stakeholders. Unfortunately, process modeling notations can be complex and need specific knowledge to be understood. Storyboards, as a visual language to illustrate workflows as sequences of images, provide natural visualization features that allow for better communication, to provide insight to people from non-process modelling expert domains. This paper proposes a visualization approach using a 3D virtual world environment to visualize storyboards for business process models. A prototype was built to present its applicability via generating output with examples of five major process model patterns and two non-trivial use cases. Illustrative results for the approach show the promise of using a 3D virtual world to visualize complex process models in an unambiguous and intuitive manner.
Resumo:
BACKGROUND: The relationships between pain, stress and anxiety, and their effect on burn wound re-epithelialization have not been well explored to-date. The aim of this study was to investigate the effect of the Ditto (a hand-held electronic medical device providing procedural preparation and distraction) intervention on re-epithelialization rates in acute pediatric burns. METHODS/DESIGN: From August 2011 to August 2012, children (4-12 years) with an acute burn presenting to the Royal Children's Hospital, Brisbane, Australia fulfilled the study requirements and were randomized to [1] Ditto intervention or [2] standard practice. Burn re-epithelialization, pain intensity, anxiety and stress measures were obtained at every dressing change until complete wound re-epithelialization. RESULTS: One hundred and seventeen children were randomized and 75 children were analyzed (n=40 standard group; n=35 Ditto group). Inability to predict wound management resulted in 42 participants no longer meeting the eligibility criteria. Wounds in the Ditto intervention group re-epithelialized faster than the standard practice group (-2.14 days (CI: -4.38 to 0.10), p-value=0.061), and significantly faster when analyses were adjusted for mean burn depth (-2.26 days (CI: -4.48 to -0.04), p-value=0.046). Following procedural preparation at the first change of dressing, the Ditto group reported lower pain intensity scores (-0.64 (CI: -1.28, 0.01) p=0.052) and lower anxiety ratings (-1.79 (CI: -3.59, 0.01) p=0.051). At the second and third dressing removals average pain (FPS-R and FLACC) and anxiety scores (VAS-A) were at least one point lower when Ditto intervention was received. CONCLUSIONS: The Ditto procedural preparation and distraction device is a useful tool alongside pharmacological intervention to improve the rate of burn re-epithelialization and manage pain and anxiety during burn wound care procedures.
Resumo:
BACKGROUND: The intense pain and anxiety triggered by burns and their associated wound care procedures are well established in the literature. Non-pharmacological intervention is a critical component of total pain management protocols and is used as an adjunct to pharmacological analgesia. An example is virtual reality, which has been used effectively to dampen pain intensity and unpleasantness. Possible links or causal relationships between pain/anxiety/stress and burn wound healing have previously not been investigated. The purpose of this study is to investigate these relationships, specifically by determining if a newly developed multi-modal procedural preparation and distraction device (Ditto) used during acute burn wound care procedures will reduce the pain and anxiety of a child and increase the rate of re-epithelialization. METHODS/DESIGN: Children (4 to 12 years) with acute burn injuries presenting for their first dressing change will be randomly assigned to either the (1) Control group (standard distraction) or (2) Ditto intervention group (receiving Ditto, procedural preparation and Ditto distraction). It is intended that a minimum of 29 participants will be recruited for each treatment group. Repeated measures of pain intensity, anxiety, stress and healing will be taken at every dressing change until complete wound re-epithelialization. Further data collection will aid in determining patient satisfaction and cost effectiveness of the Ditto intervention, as well as its effect on speed of wound re-epithelialization. DISCUSSION: Results of this study will provide data on whether the disease process can be altered by reducing stress, pain and anxiety in the context of acute burn wounds. TRIAL REGISTRATION: ACTRN12611000913976.
Resumo:
With the advancement of new technologies, this author has in 2010 started to engineer an online learning environment for investigating the nature and development of spatial abilities, and the teaching and learning of geometry. This paper documents how this new digital learning environment can afford the opportunity to integrate the learning about 3D shapes with direction, location and movement, and how young children can mentally and visually construct virtual 3D shapes using movements in both egocentric and fixed frames of reference (FOR). Findings suggest that year 4 (aged 9) children can develop the capacity to construct a cube using egocentric FOR only, fixed FOR only or a combination of both FOR. However, these young participants were unable to articulate the effect of individual or combined FOR movements. Directions for future research are proposed.
Resumo:
BACKGROUND There is a growing volume of open source ‘education material’ on energy efficiency now available however the Australian government has identified a need to increase the use of such materials in undergraduate engineering education. Furthermore, there is a reported need to rapidly equip engineering graduates with the capabilities in conducting energy efficiency assessments, to improve energy performance across major sectors of the economy. In January 2013, building on several years of preparatory action-research initiatives, the former Department of Industry, Innovation, Climate Change, Science, Research and Tertiary Education (DIICCSRTE) offered $600,000 to develop resources for energy efficiency related graduate attributes, targeting Engineers Australia college disciplines, accreditation requirements and opportunities to address such requirements. PURPOSE This paper discusses a $430,000 successful bid by a university consortium led by QUT and including RMIT, UA, UOW, and VU, to design and pilot several innovative, targeted open-source resources for curriculum renewal related to energy efficiency assessments, in Australian engineering programs (2013-2014), including ‘flat-pack’, ‘media-bites’, ‘virtual reality’ and ‘deep dive’ case study initiatives. DESIGN/ METHOD The paper draws on literature review and lessons learned by the consortium partners in resource development over the last several years to discuss methods for selecting key graduate attributes and providing targeted resources, supporting materials, and innovative delivery options to assist universities deliver knowledge and skills to develop such attributes. This includes strategic industry and key stakeholders engagement. The paper also discusses processes for piloting, validating, peer reviewing, and refining these resources using a rigorous and repeatable approach to engaging with academic and industry colleagues. RESULTS The paper provides an example of innovation in resource development through an engagement strategy that takes advantage of existing networks, initiatives, and funding arrangements, while informing program accreditation requirements, to produce a cost-effective plan for rapid integration of energy efficiency within education. By the conference, stakeholder workshops will be complete. Resources will be in the process of being drafted, building on findings from the stakeholder engagement workshops. Reporting on this project “in progress” provides a significant opportunity to share lessons learned and take on board feedback and input. CONCLUSIONS This paper provides a useful reference document for others considering significant resource development in a consortium approach, summarising benefits and challenges. The paper also provides a basis for documenting the second half of the project, which comprises piloting resources and producing a ‘good practice guide’ for energy efficiency related curriculum renewal.
Resumo:
Over about the last decade, people involved in game development have noted the need for more formal models and tools to support the design phase of games. It is argued that the present lack of such formal tools is currently hindering knowledge transfer among designers. Formal visual languages, on the other hand, can help to more effectively express, abstract and communicate game design concepts. Moreover, formal tools can assist in the prototyping phase, allowing designers to reason about and simulate game mechanics on an abstract level. In this paper we present an initial investigation into whether workflow patterns – which have already proven to be effective for modeling business processes – are a suitable way to model task succession in games. Our preliminary results suggest that workflow patterns show promise in this regard but some limitations, especially in regard to time constraints, currently restrict their potential.
Resumo:
Introduction A novel realistic 3D virtual reality (VR) application has been developed to allow medical imaging students at Queensland University of Technology to practice radiographic techniques independently outside the usual radiography laboratory. Methods A flexible agile development methodology was used to create the software rapidly and effectively. A 3D gaming environment and realistic models were used to engender presence in the software while tutor-determined gold standards enabled students to compare their performance and learn in a problem-based learning pedagogy. Results Students reported high levels of satisfaction and perceived value and the software enabled up to 40 concurrent users to prepare for clinical practice. Student feedback also indicated that they found 3D to be of limited value in the desktop version compared to the usual 2D approach. A randomised comparison between groups receiving software-based and traditional practice measured performance in a formative role play with real equipment. The results of this work indicated superior performance with the equipment for the VR trained students (P = 0.0366) and confirmed the value of VR for enhancing 3D equipment-based problem-solving skills. Conclusions Students practising projection techniques virtually performed better at role play assessments than students practising in a traditional radiography laboratory only. The application particularly helped with 3D equipment configuration, suggesting that teaching 3D problem solving is an ideal use of such medical equipment simulators. Ongoing development work aims to establish the role of VR software in preparing students for clinical practice with a range of medical imaging equipment.
Resumo:
The 2nd International Digital Human Modeling (DHM) Symposium was held at the renowned University of Michigan Transportation Research Institute (UMTRI) in Ann Arbor, Michigan in June 11–13, 2013. The symposium was co-organised by the UMTRI and Penn State University, and endorsed by the IEA Technical Committee on Human Simulation and Virtual Environments. The conference built on the very successful inaugural event DHM2011 held in Lyon two years before; and a decade of digital human modelling conferences held under the auspices of SAE International. Practitioners and scientists from 13 countries gathered to present their state-of-the-art developments and applied research, besides discussing the most recent advances in human modelling and directions for future work in DHM...
Resumo:
Accurate modelling of automotive occupant posture is strongly related to the mechanical interaction between human body soft tissue and flexible seat components. This paper presents a finite-element study simulating the deflection of seat cushion foam and supportive seat structures, as well as human buttock and thigh soft tissue when seated. The thigh-buttock surface shell model was based on 95th percentile male subject scan data and made of two layers, covering thin to moderate thigh and buttock proportions. To replicate the effects of skin and fat, the neoprene rubber layer was modelled as a hyperelastic material with viscoelastic behaviour. The analytical seat model is based on a Ford production seat. The result of the finite-element indentation simulation is compared to a previous simulation of an indentation with a hard shell human model of equal geometry, and to the physical indentation result. We conclude that SAE composite buttock form and human-seat indentation of a suspended seat cushion can be validly simulated.
Resumo:
Aim: In 2013 QUT introduced the Medical Imaging Training Immersive Environment (MITIE) as a virtual reality (VR) platform that allowed students to practice general radiography. The system software has been expanded to now include C-Arm. The aim of this project was to investigate the use of this technology in the pedagogy of undergraduate medical imaging students who have limited to no experience in the use of the C-Arm clinically. Method: The Medical Imaging Training Immersive Environment (MITIE) application provides students with realistic and fully interactive 3D models of C-Arm equipment. As with VR initiatives in other health disciplines (1–2) the software mimics clinical practice as much as possible and uses 3D technology to enhance 3D spatial awareness and realism. The application allows students to set up and expose a virtual patient in a 3D environment as well as creating the resultant “image” for comparison with a gold standard. Automated feedback highlights ways for the student to improve their patient positioning, equipment setup or exposure factors. The students' equipment knowledge was tested using an on line assessment quiz and surveys provided information on the students' pre-clinical confidence scale, with post-clinical data comparisons. Ethical approval for the project was provided by the university ethics panel. Results: This study is currently under way and this paper will present analysis of initial student feedback relating to the perceived value of the application for confidence in a high risk environment (i.e. operating theatre) and related clinical skills development. Further in-depth evaluation is ongoing with full results to be presented. Conclusion: MITIE C-Arm has a development role to play in the pre-clinical skills training for Medical Radiation Science students. It will augment their theoretical understanding prior to their clinical experience. References 1. Bridge P, Appleyard R, Ward J, Phillips R, Beavis A. The development and evaluation of a virtual radiotherapy treatment machine using an immersive visualisation environment. Computers and Education 2007; 49(2): 481–494. 2. Gunn T, Berry C, Bridge P et al. 3D Virtual Radiography: Development and Initial Feedback. Paper presented at the 10th Annual Scientific Meeting of Medical Imaging and Radiation Therapy, March 2013 Hobart, Tasmania.
Resumo:
Learning mathematics is a complex and dynamic process. In this paper, the authors adopt a semiotic framework (Yeh & Nason, 2004) and highlight programming as one of the main aspects of the semiosis or meaning-making for the learning of mathematics. During a 10-week teaching experiment, mathematical meaning-making was enriched when primary students wrote Logo programs to create 3D virtual worlds. The analysis of results found deep learning in mathematics, as well as in technology and engineering areas. This prompted a rethinking about the nature of learning mathematics and a need to employ and examine a more holistic learning approach for the learning in science, technology, engineering, and mathematics (STEM) areas.
Resumo:
The aim of this study was to build a model and analyze how users move in a virtual environment and to explore the experiential dimensions connected with different ways of moving. Due to the lack of previous research on this subject, this was an explorative study. This study also aimed to identify different ways how users move in virtual environments and the background variables connected to them. It was hypothesized that fluent movement in virtual environments is connected to high presence, skill and challenge assessments. Test participants (n = 68) were mostly highly educated young adults. A virtual environment was built using a CAVE -type virtual reality interface. The task was to search for objects that do not belong into a normal house. The participants movement in the virtual house was recorded on a computer. Movement was modelled using a cluster analysis of information entropy based movement measurements, acceleration, amount of stops and time spent being stationary. The experiential dimensions were measured using the EVEQ -questionnaire. We were able to identify four different ways of moving in virtual environments. In respect of background variables, the four groups differed only in the amount of weekly computer usage. However, fluent movement in virtual environments was connected to a high sense of presence. Furthermore, participants who moved fluently in the environment assessed their skills as being high and regarded the use of virtual environment as challenging. The results indicate that different ways of moving affects how people experience virtual environments. Consequently the participants assessment of their skills and level of challenge have an impact on the affective evaluation of the situation at hand. Entropy measures have not been previously applied when studying movement, and in addition the role of movement on the experiential dimensions of virtual environments is an unexplored subject. The movement analysis method introduced here is applicable to other research problems. Finally, this study expands on our knowledge of the special characteristics connected with the experiential dimensions of virtual environments.
Resumo:
Undergraduate Medical Imaging (MI)students at QUT attend their first clinical placement towards the end of semester two. Students undertake two (pre)clinical skills development units – one theory and one practical. Students gain good contextual and theoretical knowledge during these units via a blended learning model with multiple learning methods employed. Students attend theory lectures, practical sessions, tutorial sessions in both a simulated and virtual environment and also attend pre-clinical scenario based tutorial sessions. The aim of this project is to evaluate the use of blended learning in the context of 1st year Medical Imaging Radiographic Technique and its effectiveness in preparing students for their first clinical experience. It is hoped that the multiple teaching methods employed within the pre-clinical training unit at QUT builds students clinical skills prior to the real situation. A quantitative approach will be taken, evaluating via pre and post clinical placement surveys. This data will be correlated with data gained in the previous year on the effectiveness of this training approach prior to clinical placement. In 2014 59 students were surveyed prior to their clinical placement demonstrated positive benefits of using a variety of learning tools to enhance their learning. 98.31%(n=58)of students agreed or strongly agreed that the theory lectures were a useful tool to enhance their learning. This was followed closely by 97% (n=57) of the students realising the value of performing role-play simulation prior to clinical placement. Tutorial engagement was considered useful for 93.22% (n=55) whilst 88.14% (n=52) reasoned that the x-raying of phantoms in the simulated radiographic laboratory was beneficial. Self-directed learning yielded 86.44% (n=51). The virtual reality simulation software was valuable for 72.41% (n=42) of the students. Of the 4 students that disagreed or strongly disagreed with the usefulness of any tool they strongly agreed to the usefulness of a minimum of one other learning tool. The impact of the blended learning model to meet diverse student needs continues to be positive with students engaging in most offerings. Students largely prefer pre -clinical scenario based practical and tutorial sessions where 'real-world’ situations are discussed.