976 resultados para QUANTUM-STATE
Resumo:
The subbands of the ground state E-c1, the first excited state E-c2 and heavy hole state E-HH1 are calculated by solving the eigenvalues of effective-mass Hamiltonian H-0 which is derived from eight-band k . p theory and the calculations are performed at k(x) = k, = k = 0 for the three-dimensional array of InGaAs/GaAs quantum dots (QDs). With indium content in InGaAs QDs gradually increasing from 30% to 100%,the intersubband transition wavelength of E-c2 to E-c1, blue-shifts from 18.50 to 11.87 mu m,while the transition wavelength of E-c1, to E-HH1, red-shifts from 1. 04 to 1. 73 mu m. With the sizes of Ir-0.5 Ga-0.5 As and InAs QDs increasing from 1.0 to 5.0 nm, the intersubband transition from E-c1, to E-C2 transforms from bound-state-to-continuum-state to bound-state-to-bound-state, and the corresponding intersubband transition wavelengths red-shift from 8.12 pm (5.90 pm) to 53.47 mu m (31.87 pm), respectively, and the transition wavelengths of E-C1 to E-HH1 red-shift from 1. 13 mu m (1.60 mu m) to 1.27 mu m (2.01 mu m), respectively.
Resumo:
In this review, the potential of mode-locked lasers based on advanced quantum-dot ( QD) active media to generate short optical pulses is analysed. A comprehensive review of experimental and theoretical work on related aspects is provided, including monolithic-cavity mode-locked QD lasers and external-cavity mode-locked QD lasers, as well as mode-locked solid-state and fibre lasers based on QD semiconductor saturable absorber mirrors. Performance comparisons are made for state-of-the-art experiments. Various methods for improving important characteristics of mode-locked pulses such as pulse duration, repetition rate, pulse power, and timing jitter through optimization of device design parameters or mode-locking methods are addressed. In addition, gain switching and self-pulsation of QD lasers are also briefly reviewed, concluding with the summary and prospects.
Resumo:
The electronic structures of N quantum dot molecules (QDMs) are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels are calculated. In the calculations, the effects of finite offset and valence-band mixing are taken into account. The theoretical method can be used to calculate the electronic structures of any QDM. The results show that (1) electronic energy levels decrease monotonically and the energy difference between the N QDMs decreases as the quantum dot (QD) radius increases; (2) the electron energy level is lower and quantum confinement is smaller for the larger N QDM; (3) the hole ground state energy level is lower for the one dot QDM than N (greater 1) QDMs if the QD radius is larger than about 5 nm due to the valence-band mixing. The results are useful for the application of the N QDM to photoelectric devices.
Resumo:
We have observed the weak antilocalization (WAL) and beating SdH oscillation through magnetotransport measurements performed on a heavily delta-doped In0.52Al0.48As/In0.53Ga0.47As/In0.5Al0.48As single quantum well in an applied magnetic field up to 13 T and a temperature at 1.5 K. Both effects are caused by the strong Rashba spin-orbit (SO) coupling due to high structure inversion asymmetry (SIA). The Rashba SO coupling constant alpha and zerotield spin splitting Delta(0) are estimated and the obtained values are consistent from different analysis for this sample. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Based on the effective-mass model and the mean-field approximation, we investigate the energy levels of the electron and hole states of the Mn-doped ZnO quantum wires (x=0.0018) in the presence of the external magnetic field. It is found that either twofold degenerated electron or fourfold degenerated hole states split in the field. The splitting energy is about 100 times larger than those of undoped cases. There is a dark exciton effect when the radius R is smaller than 16.6 nm, and it is independent of the effective doped Mn concentration. The lowest state transitions split into six Zeeman components in the magnetic field, four sigma(+/-) and two pi polarized Zeeman components, their splittings depend on the Mn-doped concentration, and the order of pi and sigma(+/-) polarized Zeeman components is reversed for thin quantum wires (R < 2.3 nm) due to the quantum confinement effect.
Resumo:
Magneto-transport measurements have been carried out on double/single-barrier-doped In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As quantum well samples from 1.5 to 60 K in an applied magnetic field up to 13 T. Beating Shubnikov-de Haas oscillation is observed for the symmetrically double-barrier-doped sample and demonstrated due to a symmetric state and an antisymmetric state confined in two coupled self-consistent potential wells in the single quantum well. The energy separation between the symmetric and the antisymmetric states for the double-barrier-doped sample is extracted from experimental data, which is consistent with calculation. For the single-barrier-doped sample, only beating related to magneto-intersubband scattering shows up. The pesudospin property of the symmetrically double-barrier-doped single quantum well shows that it is a good candidate for fabricating quantum transistors. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A single shallow ridge electroabsorption modulator monolithically integrated with a buried-ridge-stripe dual-core spot-size converter at the input and output port was fabricated by combining quantum-well intermixing and dual-core integration techniques simultaneously, using only a two-step low-pressure metal-organic vapor phase epitaxial process, conventional photolithography, and a chemical wet etching process. The optical insertion loss of the modulator in the on-state and the dc extinction ratio between 0 and -3 V at 1550 nm was -7.5 and 16 dB, respectively. The 3-dB modulation bandwidth was more than 10.0 GHz in electrical-optical response.
Resumo:
Conventional quantum trajectory theory developed in quantum optics is largely based on the physical unravelling of a Lindblad-type master equation, which constitutes the theoretical basis of continuous quantum measurement and feedback control. In this work, in the context of continuous quantum measurement and feedback control of a solid-state charge qubit, we present a physical unravelling scheme of a non-Lindblad-type master equation. Self-consistency and numerical efficiency are well demonstrated. In particular, the control effect is manifested in the detector noise spectrum, and the effect of measurement voltage is discussed.
Resumo:
The effects of electron-phonon interaction oil energy levels of a. polaron in a wurtzite nitride finite parabolic quantum well (PQW) are studied by using a modified Lee-Low-Pines variational method. The ground state, first excited state, and transition energy of the polaron in the GaN/Al0.3Ga0.7N wurtzite PQW are calculated by taking account of the influence of confined LO(TO)-like phonon modes and the half-space LO(TO)-like phonon modes and considering the anisotropy of all kinds of phonon modes. The numerical results are given and discussed. The results show that the electron phonon interaction strongly affects the energy levels of the polaron, and the contributions from phonons to the energy of a polaron hi a wurtzite nitride PQW are greater than that in all AlGaAs PQW. This indicates that the electron-phonon interaction in a wurtzite nitride PQW is not negligible.
Resumo:
The ground state binding energy and the average interparticle distances for a hydrogenic impurity in double quantum dots with Gaussian confinement potential are studied by the variational method. The probability density of the electron is calculated, too. The dependence of the binding energy on the impurity position is investigated for GaAs quantum dots. The result shows that the binding energy has a minimum as a function of the distance between the two quantum dots when the impurity is located at the center of one quantum dot or at the center of the edge of one quantum dot. When the impurity is located at the center of the two dots, the binding energy decreases monotonically. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this work a practical scheme is developed for the first-principles study of time-dependent quantum transport. The basic idea is to combine the transport master equation with the well-known time-dependent density functional theory. The key ingredients of this paper include (i) the partitioning-free initial condition and the consideration of the time-dependent bias voltages which base our treatment on the Runge-Gross existence theorem; (ii) the non-Markovian master equation for the reduced (many-body) central system (i.e., the device); and (iii) the construction of Kohn-Sham master equations for the reduced single-particle density matrix, where a number of auxiliary functions are introduced and their equations of motion (EOMs) are established based on the technique of spectral decomposition. As a result, starting with a well-defined initial state, the time-dependent transport current can be calculated simultaneously along with the propagation of the Kohn-Sham master equation and the EOMs of the auxiliary functions.
Resumo:
We study the Loschmidt echo (LE) of a coupled system consisting of a central spin and its surrounding environment described by a general XY spin-chain model. The quantum dynamics of the LE is shown to be remarkably influenced by the quantum criticality of the spin chain. In particular, the decaying behavior of the LE is found to be controlled by the anisotropy parameter of the spin chain. Furthermore, we show that due to the coupling to the spin chain, the ground-state Berry phase for the central spin becomes nonanalytical and its derivative with respect to the magnetic parameter lambda in spin chain diverges along the critical line lambda=1, which suggests an alternative measurement of the quantum criticality of the spin chain.
Resumo:
Major State Basic Research Project 973 program of China 2006CB604907;National Science Foundation of China 60776015 60976008;863 High Technology R&D Program of China 2007AA03Z402
Resumo:
The shape dependence of electronic structure, electron g factors in the presence of the external magnetic field of InSb quantum ellipsoids are investigated in the framework of eight-band effective-mass approximation. It is found that as the increasing aspect ratio e, the electron states with P character split into three doublets for the different physical interaction and the light-hole states with S character come up to the top of valence bands at e = 2.6 in comparison with the heavy-hole states. In the presence of the external magnetic field, the energy splits of electron states are different for their wave function distribution direction, and the hole ground state remain optical active for a suitable aspect ratio. The electron g factors of InSb spheres decrease with increasing radius, and have the value of about two for the smallest radius, about -47.2 for sufficiently larger radius, similar to the bulk material case. Actually, the electron g factors decrease as any one of the three dimensions increase. The more dimensions increase, the more g factors decrease. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimensions. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A systematic investigation is made on the influence of the longitudinal and transverse period distributions of quantum dots on the elastic strain field. The results showed that the effects of the longitudinal period and transverse period on the strain field are just opposite along the direction of center-axis of the quantum dots, and under proper conditions, both effects can be eliminated. The results demonstrate that in calculating the effect of the strain field on the electronic structure, one must take into account the quantum dots period distribution, and it is inadequate to use the isolated quantum dot model in simulating the strain field.