807 resultados para Cálculo de probabilidades
Resumo:
Vídeo que mostra detalhadamente uma das aplicações da integral definida para o cálculo da área delimitada por duas curvas. Todos os cálculos são feitos passo a passo.
Resumo:
Capítulo 3 do Livro "Noções de Cálculo Diferencial e Integral para Tecnólogos"
Resumo:
Livro completo
Resumo:
A apresentaçãp fala inicialmente sobre a existência da derivada num ponto; fala sobre a condição de que uma função ser contínua em a não implica ter derivada em a. Apresenta também exemplos importantes de tais funções. Na sequência apresenta a caracterização das derivadas, derivadas laterais e funções importantes que possuem derivadas (funções constante, linear, polinomial, racional, trigonométrica, logarítmica e exponencial). Para dar andamento são apresentadas as notações que são usadas no cálculo diferencial para derivada de 1ª ordem e de ordem superior assim como derivada de funções elementares. As regras básicas, como derivada da soma, diferença, produto e quociente de funções deriváveis são mostradas e exemplificadas no tópico 3. Na sequência são apresentadas outras definições e propriedades importantes que são: Regra da cadeia; Fórmulas que seguem do uso da regra da cadeia; derivadas implícitas; aplicações (Cálculo das retas tangentes e normais, e dos limites indeterminados).
Resumo:
Versão com menu acessível para leitores de tela e vídeo com audiodescrição.
Resumo:
Versão com menu acessível para leitores de tela e vídeo com audiodescrição.
Resumo:
A análise do galgamento de estruturas portuárias não só é importante para a avaliação da segurança de bens, pessoas e equipamentos e das atividades junto a elas desenvolvidas, como também a nível económico e financeiro. A finalidade deste trabalho é a aplicação da metodologia desenvolvida pelo Laboratório Nacional de Engenharia Civil (LNEC) para a avaliação do risco de galgamento de estruturas portuárias ao Porto de Ponta Delgada, Açores, num período de dois anos (2011 e 2012), para cinco secções nele enquadradas. A metodologia desenvolvida ao longo desde trabalho apresenta como componentes essenciais a caraterização da agitação marítima a que estão sujeitas as secções em estudo e o cálculo do caudal médio de galgamento por metro linear de estrutura. Estas duas variáveis, inicialmente estudadas e indispensáveis neste trabalho, são obtidas com base em dados de agitação marítima em águas profundas fornecidas pelo modelo regional de previsão de agitação WAVEWATCH III, que, acoplado ao modelo espetral SWAN e ao modelo de declive suave DREAMS, permite a obtenção da agitação marítima incidente na entrada do porto e no seu interior, respetivamente. Os resultados do modelo SWAN são validados mediante uma comparação com dados medidos in situ pela boia ondógrafo localizada ao largo da zona em estudo. Os parâmetros de agitação marítima obtidos para as cinco secções em análise permitem determinar o caudal médio de galgamento, com recurso à ferramenta NN_OVERTOPPING, baseada em redes neuronais.Em seguida, como resultado da combinação entre os valores de probabilidades e de consequências associadas, quando ultrapassado um determinado caudal médio de galgamento admissível anteriormente estabelecido para cada zona em estudo, é obtido um grau de risco de galgamento para cada zona analisada, o que permite criar um mapa de risco que servirá de informação para o planeamento de operações e de futuras intervenções nessa envolvente.
Resumo:
Embora tenha sido proposto que a vasculatura retínica apresenta estrutura fractal, nenhuma padronização do método de segmentação ou do método de cálculo das dimensões fractais foi realizada. Este estudo objetivou determinar se a estimação das dimensões fractais da vasculatura retínica é dependente dos métodos de segmentação vascular e dos métodos de cálculo de dimensão. Métodos: Dez imagens retinográficas foram segmentadas para extrair suas árvores vasculares por quatro métodos computacionais (“multithreshold”, “scale-space”, “pixel classification” e “ridge based detection”). Suas dimensões fractais de “informação”, de “massa-raio” e “por contagem de caixas” foram então calculadas e comparadas com as dimensões das mesmas árvores vasculares, quando obtidas pela segmentação manual (padrão áureo). Resultados: As médias das dimensões fractais variaram através dos grupos de diferentes métodos de segmentação, de 1,39 a 1,47 para a dimensão por contagem de caixas, de 1,47 a 1,52 para a dimensão de informação e de 1,48 a 1,57 para a dimensão de massa-raio. A utilização de diferentes métodos computacionais de segmentação vascular, bem como de diferentes métodos de cálculo de dimensão, introduziu diferença estatisticamente significativa nos valores das dimensões fractais das árvores vasculares. Conclusão: A estimação das dimensões fractais da vasculatura retínica foi dependente tanto dos métodos de segmentação vascular, quanto dos métodos de cálculo de dimensão utilizados
Resumo:
This article refers to a research which tries to historically (re)construct the conceptual development of the Integral and Differential calculus, taking into account its constructing model feature, since the Greeks to Newton. These models were created by the problems that have been proposed by the history and were being modified by the time the new problems were put and the mathematics known advanced. In this perspective, I also show how a number of nature philosophers and mathematicians got involved by this process. Starting with the speculations over scientific and philosophical natures done by the ancient Greeks, it culminates with Newton s work in the 17th century. Moreover, I present and analyze the problems proposed (open questions), models generated (questions answered) as well as the religious, political, economic and social conditions involved. This work is divided into 6 chapters plus the final considerations. Chapter 1 shows how the research came about, given my motivation and experience. I outline the ways I have gone trough to refine the main question and present the subject of and the objectives of the research, ending the chapter showing the theoretical bases by which the research was carried out, naming such bases as Investigation Theoretical Fields (ITF). Chapter 2 presents each one of the theoretical bases, which was introduced in the chapter 1 s end. In this discuss, I try to connect the ITF to the research. The Chapter 3 discusses the methodological choices done considering the theoretical fields considered. So, the Chapters 4, 5 and 6 present the main corpus of the research, i.e., they reconstruct the calculus history under a perspective of model building (questions answered) from the problems given (open questions), analyzing since the ancient Greeks contribution (Chapter 4), pos- Greek, especially, the Romans contribution, Hindus, Arabian, and the contribution on the Medium Age (Chapter 5). I relate the European reborn and the contribution of the philosophers and scientists until culminate with the Newton s work (Chapter 6). In the final considerations, it finally gives an account on my impressions about the development of the research as well as the results reached here. By the end, I plan out a propose of curse of Differential and Integral Calculus, having by basis the last three chapters of the article
Resumo:
Foi desenvolvido um modelo bioeconômico para o cálculo do desempenho, dos custos e das receitas para obtenção de valores econômicos de características de interesse econômico em sistemas de produção de gado de corte no Brasil. As informações de desempenho e de parâmetros biológicos e econômicos foram obtidas em uma propriedade de gado Nelore que realiza ciclo completo com venda de reprodutores. O modelo é determinístico e estático e foram usadas planilhas Excel para a realização dos cálculos. Com base nas informações originais, foram simulados dois sistemas de produção, um fazendo o ciclo completo com venda de reprodutores (CcoR) e o outro, de cria (Cc). Foram calculados os custos e as receitas para esses dois sistemas e, a partir disto, foram obtidos seus lucros anuais. Para o cálculo dos valores econômicos foram escolhidas as características peso à desmama (PD), peso adulto da vaca (PAV), taxa de prenhez (TP) e taxa de desmama (TD), que são de interesse nos dois sistemas de produção. Para avaliar o impacto das mudanças no desempenho das características sobre o lucro anual do sistema de produção, os valores iniciais das características foram aumentados em 1%. Esse aumento resultou em mudanças positivas no lucro, observando-se que a TD foi a característica que apresentou maior impacto nos dois sistemas. Para o CcoR, os valores econômicos para PD, PAV, TP e TD foram, respectivamente, R$ 0,40/kg, R$ 0,09/kg, R$ 3,20/1% e R$ 10,15/1%. Para Cc, estes valores foram, respectivamente, de R$ 1,31/kg, R$ 0,09/kg, R$ 2,41/1% e R$ 3,36/1%. O modelo foi capaz de reproduzir satisfatoriamente o sistema de produção de gado de corte estudado e pode ser adaptado para outras circunstâncias de produção.
Resumo:
The idea of considering imprecision in probabilities is old, beginning with the Booles George work, who in 1854 wanted to reconcile the classical logic, which allows the modeling of complete ignorance, with probabilities. In 1921, John Maynard Keynes in his book made explicit use of intervals to represent the imprecision in probabilities. But only from the work ofWalley in 1991 that were established principles that should be respected by a probability theory that deals with inaccuracies. With the emergence of the theory of fuzzy sets by Lotfi Zadeh in 1965, there is another way of dealing with uncertainty and imprecision of concepts. Quickly, they began to propose several ways to consider the ideas of Zadeh in probabilities, to deal with inaccuracies, either in the events associated with the probabilities or in the values of probabilities. In particular, James Buckley, from 2003 begins to develop a probability theory in which the fuzzy values of the probabilities are fuzzy numbers. This fuzzy probability, follows analogous principles to Walley imprecise probabilities. On the other hand, the uses of real numbers between 0 and 1 as truth degrees, as originally proposed by Zadeh, has the drawback to use very precise values for dealing with uncertainties (as one can distinguish a fairly element satisfies a property with a 0.423 level of something that meets with grade 0.424?). This motivated the development of several extensions of fuzzy set theory which includes some kind of inaccuracy. This work consider the Krassimir Atanassov extension proposed in 1983, which add an extra degree of uncertainty to model the moment of hesitation to assign the membership degree, and therefore a value indicate the degree to which the object belongs to the set while the other, the degree to which it not belongs to the set. In the Zadeh fuzzy set theory, this non membership degree is, by default, the complement of the membership degree. Thus, in this approach the non-membership degree is somehow independent of the membership degree, and this difference between the non-membership degree and the complement of the membership degree reveals the hesitation at the moment to assign a membership degree. This new extension today is called of Atanassov s intuitionistic fuzzy sets theory. It is worth noting that the term intuitionistic here has no relation to the term intuitionistic as known in the context of intuitionistic logic. In this work, will be developed two proposals for interval probability: the restricted interval probability and the unrestricted interval probability, are also introduced two notions of fuzzy probability: the constrained fuzzy probability and the unconstrained fuzzy probability and will eventually be introduced two notions of intuitionistic fuzzy probability: the restricted intuitionistic fuzzy probability and the unrestricted intuitionistic fuzzy probability
Resumo:
This study aims to seek a more viable alternative for the calculation of differences in images of stereo vision, using a factor that reduces heel the amount of points that are considered on the captured image, and a network neural-based radial basis functions to interpolate the results. The objective to be achieved is to produce an approximate picture of disparities using algorithms with low computational cost, unlike the classical algorithms
Resumo:
The increasing demand for high performance wireless communication systems has shown the inefficiency of the current model of fixed allocation of the radio spectrum. In this context, cognitive radio appears as a more efficient alternative, by providing opportunistic spectrum access, with the maximum bandwidth possible. To ensure these requirements, it is necessary that the transmitter identify opportunities for transmission and the receiver recognizes the parameters defined for the communication signal. The techniques that use cyclostationary analysis can be applied to problems in either spectrum sensing and modulation classification, even in low signal-to-noise ratio (SNR) environments. However, despite the robustness, one of the main disadvantages of cyclostationarity is the high computational cost for calculating its functions. This work proposes efficient architectures for obtaining cyclostationary features to be employed in either spectrum sensing and automatic modulation classification (AMC). In the context of spectrum sensing, a parallelized algorithm for extracting cyclostationary features of communication signals is presented. The performance of this features extractor parallelization is evaluated by speedup and parallel eficiency metrics. The architecture for spectrum sensing is analyzed for several configuration of false alarm probability, SNR levels and observation time for BPSK and QPSK modulations. In the context of AMC, the reduced alpha-profile is proposed as as a cyclostationary signature calculated for a reduced cyclic frequencies set. This signature is validated by a modulation classification architecture based on pattern matching. The architecture for AMC is investigated for correct classification rates of AM, BPSK, QPSK, MSK and FSK modulations, considering several scenarios of observation length and SNR levels. The numerical results of performance obtained in this work show the eficiency of the proposed architectures
Resumo:
The following work is to interpret and analyze the problem of induction under a vision founded on set theory and probability theory as a basis for solution of its negative philosophical implications related to the systems of inductive logic in general. Due to the importance of the problem and the relatively recent developments in these fields of knowledge (early 20th century), as well as the visible relations between them and the process of inductive inference, it has been opened a field of relatively unexplored and promising possibilities. The key point of the study consists in modeling the information acquisition process using concepts of set theory, followed by a treatment using probability theory. Throughout the study it was identified as a major obstacle to the probabilistic justification, both: the problem of defining the concept of probability and that of rationality, as well as the subtle connection between the two. This finding called for a greater care in choosing the criterion of rationality to be considered in order to facilitate the treatment of the problem through such specific situations, but without losing their original characteristics so that the conclusions can be extended to classic cases such as the question about the continuity of the sunrise
Resumo:
Systems whose spectra are fractals or multifractals have received a lot of attention in recent years. The complete understanding of the behavior of many physical properties of these systems is still far from being complete because of the complexity of such systems. Thus, new applications and new methods of study of their spectra have been proposed and consequently a light has been thrown on their properties, enabling a better understanding of these systems. We present in this work initially the basic and necessary theoretical framework regarding the calculation of energy spectrum of elementary excitations in some systems, especially in quasiperiodic ones. Later we show, by using the Schr¨odinger equation in tight-binding approximation, the results for the specific heat of electrons within the statistical mechanics of Boltzmann-Gibbs for one-dimensional quasiperiodic systems, growth by following the Fibonacci and Double Period rules. Structures of this type have already been exploited enough, however the use of non-extensive statistical mechanics proposed by Constantino Tsallis is well suited to systems that have a fractal profile, and therefore our main objective was to apply it to the calculation of thermodynamical quantities, by extending a little more the understanding of the properties of these systems. Accordingly, we calculate, analytical and numerically, the generalized specific heat of electrons in one-dimensional quasiperiodic systems (quasicrystals) generated by the Fibonacci and Double Period sequences. The electronic spectra were obtained by solving the Schr¨odinger equation in the tight-binding approach. Numerical results are presented for the two types of systems with different values of the parameter of nonextensivity q