929 resultados para 3-DIMENSIONAL ARCHITECTURE
Resumo:
Николай Кутев, Величка Милушева - Намираме експлицитно всичките би-омбилични фолирани полусиметрични повърхнини в четиримерното евклидово пространство R^4
Resumo:
Ива Р. Докузова, Димитър Р. Разпопов - В настоящата статия е разгледан клас V оттримерни риманови многообразия M с метрика g и два афинорни тензора q и S. Дефинирана е и друга метрика ¯g в M. Локалните координати на всички тези тензори са циркулантни матрици. Намерени са: 1) зависимост между тензора на кривина R породен от g и тензора на кривина ¯R породен от ¯g; 2) тъждество за тензора на кривина R в случая, когато тензорът на кривина ¯R се анулира; 3) зависимост между секционната кривина на прозволна двумерна q-площадка {x, qx} и скаларната кривина на M.
Resumo:
A family of Cu/TiO2 catalysts was prepared using a refined sol–gel method, and tested in the photocatalytic reduction of CO2 by H2O to CH4 using a stirred batch, annular reactor. The resulting photoactivity was benchmarked against pure TiO2 nanoparticles (synthesised by an identical sol–gel route). CO2 photoreduction exhibited a strong volcano dependence on Cu loading, reflecting the transition from 2-dimensional CuOx nanostructures to 3-dimensional crystallites, with optimum CH4 production observed for 0.03 wt.% Cu/TiO2.
Resumo:
The paper presents a 3-dimensional simulation of the effect of particle shape on char entrainment in a bubbling fluidised bed reactor. Three char particles of 350 μm side length but of different shapes (cube, sphere, and tetrahedron) are injected into the fluidised bed and the momentum transport from the fluidising gas and fluidised sand is modelled. Due to the fluidising conditions, reactor design and particle shape the char particles will either be entrained from the reactor or remain inside the bubbling bed. The sphericity of the particles is the factor that differentiates the particle motion inside the reactor and their efficient entrainment out of it. The simulation has been performed with a completely revised momentum transport model for bubble three-phase flow, taking into account the sphericity factors, and has been applied as an extension to the commercial finite volume code FLUENT 6.3. © 2010 Elsevier B.V.All rights reserved.
Resumo:
Finite Difference Time Domain (FDTD) Method and software are applied to obtain diffraction waves from modulated Gaussian plane wave illumination for right angle wedges and Fast Fourier Transform (FFT) is used to get diffraction coefficients in a wideband in the illuminated lit region. Theta and Phi polarization in 3-dimensional, TM and TE polarization in 2-dimensional cases are considered respectively for soft and hard diffraction coefficients. Results using FDTD method of perfect electric conductor (PEC) wedge are compared with asymptotic expressions from Uniform Theory of Diffraction (UTD). Extend the PEC wedges to some homogenous conducting and dielectric building materials for diffraction coefficients that are not available analytically in practical conditions. ^
Resumo:
Recent advances in airborne Light Detection and Ranging (LIDAR) technology allow rapid and inexpensive measurements of topography over large areas. Airborne LIDAR systems usually return a 3-dimensional cloud of point measurements from reflective objects scanned by the laser beneath the flight path. This technology is becoming a primary method for extracting information of different kinds of geometrical objects, such as high-resolution digital terrain models (DTMs), buildings and trees, etc. In the past decade, LIDAR gets more and more interest from researchers in the field of remote sensing and GIS. Compared to the traditional data sources, such as aerial photography and satellite images, LIDAR measurements are not influenced by sun shadow and relief displacement. However, voluminous data pose a new challenge for automated extraction the geometrical information from LIDAR measurements because many raster image processing techniques cannot be directly applied to irregularly spaced LIDAR points. ^ In this dissertation, a framework is proposed to filter out information about different kinds of geometrical objects, such as terrain and buildings from LIDAR automatically. They are essential to numerous applications such as flood modeling, landslide prediction and hurricane animation. The framework consists of several intuitive algorithms. Firstly, a progressive morphological filter was developed to detect non-ground LIDAR measurements. By gradually increasing the window size and elevation difference threshold of the filter, the measurements of vehicles, vegetation, and buildings are removed, while ground data are preserved. Then, building measurements are identified from no-ground measurements using a region growing algorithm based on the plane-fitting technique. Raw footprints for segmented building measurements are derived by connecting boundary points and are further simplified and adjusted by several proposed operations to remove noise, which is caused by irregularly spaced LIDAR measurements. To reconstruct 3D building models, the raw 2D topology of each building is first extracted and then further adjusted. Since the adjusting operations for simple building models do not work well on 2D topology, 2D snake algorithm is proposed to adjust 2D topology. The 2D snake algorithm consists of newly defined energy functions for topology adjusting and a linear algorithm to find the minimal energy value of 2D snake problems. Data sets from urbanized areas including large institutional, commercial, and small residential buildings were employed to test the proposed framework. The results demonstrated that the proposed framework achieves a very good performance. ^
Resumo:
In the current age of fast-depleting conventional energy sources, top priority is given to exploring non-conventional energy sources, designing highly efficient energy storage systems and converting existing machines/instruments/devices into energy-efficient ones. ‘Energy efficiency’ is one of the important challenges for today’s scientific and research community, worldwide. In line with this demand, the current research was focused on developing two highly energy-efficient devices – field emitters and Li-ion batteries, using beneficial properties of carbon nanotubes (CNT). Interface-engineered, directly grown CNTs were used as cathode in field emitters, while similar structure was applied as anode in Li-ion batteries. Interface engineering was found to offer minimum resistance to electron flow and strong bonding with the substrate. Both field emitters and Li-ion battery anodes were benefitted from these advantages, demonstrating high energy efficiency. Field emitter, developed during this research, could be characterized by low turn-on field, high emission current, very high field enhancement factor and extremely good stability during long-run. Further, application of 3-dimensional design to these field emitters resulted in achieving one of the highest emission current densities reported so far. The 3-D field emitter registered 27 times increase in current density, as compared to their 2-D counterparts. These achievements were further followed by adding new functionalities, transparency and flexibility, to field emitters, keeping in view of current demand for flexible displays. A CNT-graphene hybrid structure showed appreciable emission, along with very good transparency and flexibility. Li-ion battery anodes, prepared using the interface-engineered CNTs, have offered 140% increment in capacity, as compared to conventional graphite anodes. Further, it has shown very good rate capability and an exceptional ‘zero capacity degradation’ during long cycle operation. Enhanced safety and charge transfer mechanism of this novel anode structure could be explained from structural characterization. In an attempt to progress further, CNTs were coated with ultrathin alumina by atomic layer deposition technique. These alumina-coated CNT anodes offered much higher capacity and an exceptional rate capability, with very low capacity degradation in higher current densities. These highly energy efficient CNT based anodes are expected to enhance capacities of future Li-ion batteries.
Resumo:
The current study assessed the importance of infant detection of contingency and head and eye gaze direction in the emergence of social referencing. Five- to six-month-old infants' detection of affect-object relations and subsequent manual preferences for objects paired with positive expressions were assessed. In particular, the role of contingency between toys' movements and an actress's emotional expressions as well as the role of gaze direction toward the toys' location were examined. Infants were habituated to alternating films of two toys each paired with an actress's affective expression (happy and fearful) under contingent or noncontingent and gaze congruent or gaze incongruent conditions. Results indicated that gaze congruence and contingency between toys' movements and a person's affective expressions were important for infant perception of affect-object relations. Furthermore, infant perception of the relation between affective expressions and toys translated to their manual preferences for the 3-dimensional toys. Infants who received contingent affective responses to the movements of the toys spent more time touching the toy that was previously paired with the positive expression. These findings demonstrate the role of contingency and gaze direction in the emergence of social referencing in the first half year of life.^
Resumo:
We prove that a closed 3-dimensional manifold is a torus bundle over the circle if and only if it carries a closed nonsingular 1-form which is linearly deformable into contact forms.
Resumo:
Peripheral nerves have demonstrated the ability to bridge gaps of up to 6 mm. Peripheral Nerve System injury sites beyond this range need autograft or allograft surgery. Central Nerve System cells do not allow spontaneous regeneration due to the intrinsic environmental inhibition. Although stem cell therapy seems to be a promising approach towards nerve repair, it is essential to use the distinct three-dimensional architecture of a cell scaffold with proper biomolecule embedding in order to ensure that the local environment can be controlled well enough for growth and survival. Many approaches have been developed for the fabrication of 3D scaffolds, and more recently, fiber-based scaffolds produced via the electrospinning have been garnering increasing interest, as it offers the opportunity for control over fiber composition, as well as fiber mesh porosity using a relatively simple experimental setup. All these attributes make electrospun fibers a new class of promising scaffolds for neural tissue engineering. Therefore, the purpose of this doctoral study is to investigate the use of the novel material PGD and its derivative PGDF for obtaining fiber scaffolds using the electrospinning. The performance of these scaffolds, combined with neural lineage cells derived from ESCs, was evaluated by the dissolvability test, Raman spectroscopy, cell viability assay, real time PCR, Immunocytochemistry, extracellular electrophysiology, etc. The newly designed collector makes it possible to easily obtain fibers with adequate length and integrity. The utilization of a solvent like ethanol and water for electrospinning of fibrous scaffolds provides a potentially less toxic and more biocompatible fabrication method. Cell viability testing demonstrated that the addition of gelatin leads to significant improvement of cell proliferation on the scaffolds. Both real time PCR and Immunocytochemistry analysis indicated that motor neuron differentiation was achieved through the high motor neuron gene expression using the metabolites approach. The addition of Fumaric acid into fiber scaffolds further promoted the differentiation. Based on the results, this newly fabricated electrospun fiber scaffold, combined with neural lineage cells, provides a potential alternate strategy for nerve injury repair.
Resumo:
Pour être performant au plus haut niveau, les athlètes doivent posséder une capacité perceptivo-cognitive supérieure à la moyenne. Cette faculté, reflétée sur le terrain par la vision et l’intelligence de jeu des sportifs, permet d’extraire l’information clé de la scène visuelle. La science du sport a depuis longtemps observé l’expertise perceptivo-cognitive au sein de l’environnement sportif propre aux athlètes. Récemment, des études ont rapporté que l’expertise pouvait également se refléter hors de ce contexte, lors d’activités du quotidien par exemple. De plus, les récentes théories entourant la capacité plastique du cerveau ont amené les chercheurs à développer des outils pour entraîner les capacités perceptivo-cognitives des athlètes afin de les rendre plus performants sur le terrain. Ces méthodes sont la plupart du temps contextuelles à la discipline visée. Cependant, un nouvel outil d’entraînement perceptivo-cognitif, nommé 3-Dimensional Multiple Object Tracking (3D-MOT) et dénué de contexte sportif, a récemment vu le jour et a fait l’objet de nos recherches. Un de nos objectifs visait à mettre en évidence l’expertise perceptivo-cognitive spécifique et non-spécifique chez des athlètes lors d’une même étude. Nous avons évalué la perception du mouvement biologique chez des joueurs de soccer et des non-athlètes dans une salle de réalité virtuelle. Les sportifs étaient systématiquement plus performants en termes d’efficacité et de temps de réaction que les novices pour discriminer la direction du mouvement biologique lors d’un exercice spécifique de soccer (tir) mais également lors d’une action issue du quotidien (marche). Ces résultats signifient que les athlètes possèdent une meilleure capacité à percevoir les mouvements biologiques humains effectués par les autres. La pratique du soccer semble donc conférer un avantage fondamental qui va au-delà des fonctions spécifiques à la pratique d’un sport. Ces découvertes sont à mettre en parallèle avec la performance exceptionnelle des athlètes dans le traitement de scènes visuelles dynamiques et également dénuées de contexte sportif. Des joueurs de soccer ont surpassé des novices dans le test de 3D-MOT qui consiste à suivre des cibles en mouvement et stimule les capacités perceptivo-cognitives. Leur vitesse de suivi visuel ainsi que leur faculté d’apprentissage étaient supérieures. Ces résultats confirmaient des données obtenues précédemment chez des sportifs. Le 3D-MOT est un test de poursuite attentionnelle qui stimule le traitement actif de l’information visuelle dynamique. En particulier, l’attention sélective, dynamique et soutenue ainsi que la mémoire de travail. Cet outil peut être utilisé pour entraîner les fonctions perceptivo-cognitives des athlètes. Des joueurs de soccer entraînés au 3D-MOT durant 30 sessions ont montré une amélioration de la prise de décision dans les passes de 15% sur le terrain comparés à des joueurs de groupes contrôles. Ces données démontrent pour la première fois un transfert perceptivo-cognitif du laboratoire au terrain suivant un entraînement perceptivo-cognitif non-contextuel au sport de l’athlète ciblé. Nos recherches aident à comprendre l’expertise des athlètes par l’approche spécifique et non-spécifique et présentent également les outils d’entraînements perceptivo-cognitifs, en particulier le 3D-MOT, pour améliorer la performance dans le sport de haut-niveau.
Resumo:
Introduction: Computer-Aided-Design (CAD) and Computer-Aided-Manufacture (CAM) has been developed to fabricate fixed dental restorations accurately, faster and improve cost effectiveness of manufacture when compared to the conventional method. Two main methods exist in dental CAD/CAM technology: the subtractive and additive methods. While fitting accuracy of both methods has been explored, no study yet has compared the fabricated restoration (CAM output) to its CAD in terms of accuracy. The aim of this present study was to compare the output of various dental CAM routes to a sole initial CAD and establish the accuracy of fabrication. The internal fit of the various CAM routes were also investigated. The null hypotheses tested were: 1) no significant differences observed between the CAM output to the CAD and 2) no significant differences observed between the various CAM routes. Methods: An aluminium master model of a standard premolar preparation was scanned with a contact dental scanner (Incise, Renishaw, UK). A single CAD was created on the scanned master model (InciseCAD software, V2.5.0.140, UK). Twenty copings were then fabricated by sending the single CAD to a multitude of CAM routes. The copings were grouped (n=5) as: Laser sintered CoCrMo (LS), 5-axis milled CoCrMo (MCoCrMo), 3-axis milled zirconia (ZAx3) and 4-axis milled zirconia (ZAx4). All copings were micro-CT scanned (Phoenix X-Ray, Nanotom-S, Germany, power: 155kV, current: 60µA, 3600 projections) to produce 3-Dimensional (3D) models. A novel methodology was created to superimpose the micro-CT scans with the CAD (GOM Inspect software, V7.5SR2, Germany) to indicate inaccuracies in manufacturing. The accuracy in terms of coping volume was explored. The distances from the surfaces of the micro-CT 3D models to the surfaces of the CAD model (CAD Deviation) were investigated after creating surface colour deviation maps. Localised digital sections of the deviations (Occlusal, Axial and Cervical) and selected focussed areas were then quantitatively measured using software (GOM Inspect software, Germany). A novel methodology was also explored to digitally align (Rhino software, V5, USA) the micro-CT scans with the master model to investigate internal fit. Fifty digital cross sections of the aligned scans were created. Point-to-point distances were measured at 5 levels at each cross section. The five levels were: Vertical Marginal Fit (VF), Absolute Marginal Fit (AM), Axio-margin Fit (AMF), Axial Fit (AF) and Occlusal Fit (OF). Results: The results of the volume measurement were summarised as: VM-CoCrMo (62.8mm3 ) > VZax3 (59.4mm3 ) > VCAD (57mm3 ) > VZax4 (56.1mm3 ) > VLS (52.5mm3 ) and were all significantly different (p presented as areas with different colour. No significant differences were observed at the internal aspect of the cervical aspect between all groups of copings. Significant differences (p< M-CoCrMo Internal Occlusal, Internal Axial and External Axial 2 ZAx3 > ZAx4 External Occlusal, External Cervical 3 ZAx3 < ZAx4 Internal Occlusal 4 M-CoCrMo > ZAx4 Internal Occlusal and Internal Axial The mean values of AMF and AF were significantly (p M-CoCrMo and CAD > ZAx4. Only VF of M-CoCrMo was comparable with the CAD Internal Fit. All VF and AM values were within the clinically acceptable fit (120µm). Conclusion: The investigated CAM methods reproduced the CAD accurately at the internal cervical aspect of the copings. However, localised deviations at axial and occlusal aspects of the copings may suggest the need for modifications in these areas prior to fitting and veneering with porcelain. The CAM groups evaluated also showed different levels of Internal Fit thus rejecting the null hypotheses. The novel non-destructive methodologies for CAD/CAM accuracy and internal fit testing presented in this thesis may be a useful evaluation tool for similar applications.
Resumo:
Methane hydrate is an ice-like substance that is stable at high-pressure and low temperature in continental margin sediments. Since the discovery of a large number of gas flares at the landward termination of the gas hydrate stability zone off Svalbard, there has been concern that warming bottom waters have started to dissociate large amounts of gas hydrate and that the resulting methane release may possibly accelerate global warming. Here, we can corroborate that hydrates play a role in the observed seepage of gas, but we present evidence that seepage off Svalbard has been ongoing for at least three thousand years and that seasonal fluctuations of 1-2°C in the bottom-water temperature cause periodic gas hydrate formation and dissociation, which focus seepage at the observed sites.
Resumo:
The cold-water coral Lophelia pertusa is one of the few species able to build reef-like structures and a 3-dimensional coral framework in the deep oceans. Furthermore, deep cold-water coral bioherms may be among the first marine ecosystems to be affected by ocean acidification. Colonies of L. pertusa were collected during a cruise in 2006 to cold-water coral bioherms of the Mingulay reef complex (Hebrides, North Atlantic). Shortly after sample collection onboard these corals were labelled with calcium-45. The same experimental approach was used to assess calcification rates and how those changed due to reduced pH during a cruise to the Skagerrak (North Sea) in 2007. The highest calcification rates were found in youngest polyps with up to 1% d-1 new skeletal growth and average rates of 0.11±0.02% d-1±S.E.). Lowering pH by 0.15 and 0.3 units relative to the ambient level resulted in calcification being reduced by 30 and 56%. Lower pH reduced calcification more in fast growing, young polyps (59% reduction) than in older polyps (40% reduction). Thus skeletal growth of young and fast calcifying corallites suffered more from ocean acidification. Nevertheless, L. pertusa exhibited positive net calcification (as measured by 45Ca incorporation) even at an aragonite saturation state below 1.
Resumo:
La media vasculaire est au coeur des processus physiopathologiques qui entraînent le développement de l’athérosclérose. L’utilisation d’une media reconstruite par génie tissulaire permet d’étudier les cellules musculaires lisses (CML) humaines dans un environnement plus physiologique que les cellules en culture monocouche. Les travaux présentés dans cette thèse sont orientés autour de la media vasculaire reconstruite par génie tissulaire comme modèle d’étude pharmacologique et prothèse vasculaire autologue. La première partie des travaux porte sur l’étude des interactions de cette tunique avec les microparticules (MP) circulantes. D’abord, nous avons montré que la présence de l’adventice modifie la réponse de la media aux MP produites in vitro à partir des lymphocytes T. Ensuite, l’étude de l’effet des MP isolées du sérum de patients en choc septique sur la media humaine a démontré que ces MP sont en mesure d’augmenter la contraction de la media par un mécanisme impliquant une diminution du NO et une augmentation de l’expression de l’ARN messager de l’interleukine-10. L’incubation de la media reconstruite avec cette cytokine anti-inflammatoire bloque l’hyporéactivité induite par les lipopolysaccharides. Le même phénomène a été reproduit in vivo, chez le rongeur. Ces résultats suggèrent que les SMP auraient un effet protecteur sur la fonction vasculaire, en potentialisant la contraction de la media. Ensuite, nous avons optimisé l’approche de reconstruction de prothèses vasculaires par auto-assemblage proposée initialement pour l’adapter au contexte particulier des CML. L’objectif principal était de permettre l’étude physiopathologique de la media à partir de toutes les lignées de CML; indépendamment de leur capacité de synthèse de matrice extracellulaire. Pour ce faire, nous avons développé un échafaudage de matrice extracellulaire produit par auto-assemblage à partir de fibroblastes humains. L’utilisation de cet échafaudage génère une media plus résistante et plus contractile que la technique initiale. Enfin, une anisotropie a été créée dans cet échafaudage pour permettre une orientation physiologique des CML. La media reconstruite devient ainsi plus résistante et plus contractile. Ces améliorations permettent de reconstruire des media à partir des cellules de plus de patients et mèneront à des études pharmacologiques plus représentatives de la population. Cet échafaudage facilitera la translation clinique de ce modèle de media reconstruite par génie tissulaire.