Seawater carbonate chemistry and calcification of Lophelia pertusa during experiments, 2009


Autoria(s): Maier, Cornelia; Hegeman, Jan; Weinbauer, Markus G; Gattuso, Jean-Pierre
Data(s)

31/08/2009

Resumo

The cold-water coral Lophelia pertusa is one of the few species able to build reef-like structures and a 3-dimensional coral framework in the deep oceans. Furthermore, deep cold-water coral bioherms may be among the first marine ecosystems to be affected by ocean acidification. Colonies of L. pertusa were collected during a cruise in 2006 to cold-water coral bioherms of the Mingulay reef complex (Hebrides, North Atlantic). Shortly after sample collection onboard these corals were labelled with calcium-45. The same experimental approach was used to assess calcification rates and how those changed due to reduced pH during a cruise to the Skagerrak (North Sea) in 2007. The highest calcification rates were found in youngest polyps with up to 1% d-1 new skeletal growth and average rates of 0.11±0.02% d-1±S.E.). Lowering pH by 0.15 and 0.3 units relative to the ambient level resulted in calcification being reduced by 30 and 56%. Lower pH reduced calcification more in fast growing, young polyps (59% reduction) than in older polyps (40% reduction). Thus skeletal growth of young and fast calcifying corallites suffered more from ocean acidification. Nevertheless, L. pertusa exhibited positive net calcification (as measured by 45Ca incorporation) even at an aragonite saturation state below 1.

Formato

text/tab-separated-values, 7748 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.767577

doi:10.1594/PANGAEA.767577

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Maier, Cornelia; Hegeman, Jan; Weinbauer, Markus G; Gattuso, Jean-Pierre (2009): Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences, 6(8), 1671-1680, doi:10.5194/bg-6-1671-2009

Palavras-Chave #Alkalinity, total; Aragonite saturation state; Bicarbonate ion; calcification; Calcification rate; Calcite saturation state; Calcium; Calculated using seacarb; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; corals; Date; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); laboratory; Lophelia pertusa, skeleton, dry weight; Lophelia pertusa, tissue, dry weight; Measured; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Salinity; Sample ID; see reference(s); Species; Temperature, water; Time in days
Tipo

Dataset