966 resultados para spin Hall effect
Resumo:
We theoretically investigate the energy spectra of two-electron two-dimensional (2e 2D) quantum dots (QDs) confined by triangular potentials and bowl-like potentials in a magnetic field by exact diagonalization in the framework of effective mass theory. An in-plane electric field is,found to contribute to the singlet-triplet transition of the ground state of the 2e 2D QDs confined by triangular or bowl-like potentials in a perpendicular magnetic field. The stronger the in-plane electric field, the smaller the magnetic field for the total spin of the ground states in the dot systems to change from S = 0 to S = 1. However, the influence of an in-plane electric field on the singlet-triplet transition of the ground state of two electrons in a triangular QD modulated by a perpendicular magnetic field is quite small because the triangular potential just deviates from the harmonic potential well slightly. We End that the strength of the perpendicular magnetic field needed for the spin singlet-triplet transition of the ground state of the QD confined by a bowl-like potential is reduced drastically by applying an in-plane electric field.
Resumo:
We investigate the spin polarized current through a quantum dot connected to ferromagnetic leads in the presence of a finite spin-dependent chemical potential. The effects of the spin polarization of the leads p and the external magnetic field B are studied. It is found that both the magnitude and the symmetry of the current are dependent on the spin polarization of the leads. When the two ferromagnetic leads are in parallel configuration, the spin polarization p has an insignificant effect on the spin current, and an accompanying charge current appears with the increase of p. When the leads are in antiparallel configuration, however, the effect of p is distinct. The charge current is always zero regardless of the variation of p in the absence of B. The peaks appearing in the pure spin current are greatly suppressed and become asymmetric as p is increased. The applied magnetic field B results in an accompanying charge current in both the parallel and antiparallel configurations of the leads. The characteristics of the currents are explained in terms of the density of states of the quantum dot.
Resumo:
Zincblende Mn-rich Mn(Ga)As nanoclusters embedded in GaAs matrices are fabricated by in situ postgrowth annealing diluted magnetic semiconductor (Ga,Mn)As films with Mn concentration ranging from 2.6% to 8% at 650 degrees C. Magnetization measurements show that memory effect and slow magnetic relaxation, the typical characteristics of the spin-glass-like phase, occur below the blocking temperature of 45 K in samples with high Mn concentration, while for samples with low Mn concentration, ferromagnetic order remains up to 360 K. The behavior of low-temperature spin dynamics can be explained by the hierarchical model. (c) 2007 American Institute of Physics.
Resumo:
The circular photogalvanic effect (CPGE) of the two-dimensional electron gas (2DEG) in Al0.25Ga0.75N/GaN heterostructures induced by infrared radiation has been investigated under uniaxial strain. The observed photocurrent consists of the superposition of the CPGE and the linear photogalvanic effect currents, both of which are up to 10(-2) nA. The amplitude of the CPGE current increases linearly with additional strain and is enhanced by 18.6% with a strain of 2.2x10(-3). Based on the experimental results, the contribution of bulk-inversion asymmetry (BIA) and structure-inversion asymmetry (SIA) spin splitting of the 2DEG to the CPGE current in the heterostructures is separated, and the ratio of SIA and BIA terms is estimated to be about 13.2, indicating that the SIA is the dominant mechanism to induce the k-linear spin splitting of the subbands in the triangular quantum well at AlxGa1-xN/GaN heterointerfaces. (C) 2007 American Institute of Physics.
Resumo:
The hole Rashba effect and g-factor in InP nanowires in the presence of electric and magnetic fields which bring spin splitting are investigated theoretically in the framework of eight-band effective-mass envelop function theory, by expanding the lateral wave function in Bessel functions. It is well known that the electron Rashba coefficient increases nearly linearly with the electric field. As the Rashba spin splitting is zero at zero k(z) ( the wave vector along the wire direction), the electron g-factor at k(z) = 0 changes little with the electric field. While we find that as the electric field increases, the hole Rashba coefficient increases at first, then decreases. It is noticed that the hole Rashba coefficient is zero at a critical electric field. The hole g-factor at k(z) = 0 changes obviously with the electric field.
Resumo:
The nonradiative recombination effect on carrier dynamics in GaInNAs/GaAs quantum wells is studied by time-resolved photoluminescence (TRPL) and polarization-dependent TRPL at various excitation intensities. It is found that both recombination dynamics and spin relaxation dynamics strongly depend on the excitation intensity. Under moderate excitation intensities the PL decay curves exhibit unusual non-exponential behaviour. This result is well stimulated by a rate equation involving both the radiative and non-radiative recombinations via the introduction of a new parameter of the effective concentration of nonradiative recombination centres in the rate equation. In the spin dynamics study, the spin relaxation also shows strong excitation power dependence. Under the high excitation power an increase of spin polarization degree with time is observed. This new finding provides a useful hint that the spin process can be controlled by excitation power in GaInNAs systems.
Resumo:
We investigate theoretically spin-polarized transport in a one-dimensional waveguide structure under spatially periodic electric fields. Strong spin-polarized current can be obtained by tuning the external electric fields. It is interesting to find that the spin-dependent transmissions exhibit gaps at various electron momenta and/or gate lengths, and the gap width increases with increasing the strength of the Rashba effect. The strong spin-polarized current arises from the different transmission gaps of the spin-up and spin-down electrons. (c) 2006 American Institute of Physics.
Resumo:
The transport property of a lateral two-dimensional paramagnetic diluted magnetic semiconductor electron gas under a spatially periodic magnetic field is investigated theoretically. We find that the electron Fermi velocity along the modulation direction is highly spin dependent even if the spin polarization of the carrier population is negligibly small. It turns out that this spin-polarized Fermi velocity alone can lead to a strong spin polarization of the current, which is still robust against the energy broadening effect induced by the impurity scattering. (c) 2006 American Institute of Physics.
Resumo:
We investigate theoretically the spin-polarized transport in one-dimensional waveguide structure with spatially-periodic electronic and magnetic fields. The interplay of the spin-orbit interaction and in-plane magnetic field significantly modifies the spin-dependent transmission and the spin polarization. The in-plane magnetic fields increase the strength of the Rashba spin-orbit coupling effect for the electric fields along y axis and decrease this effect for reversing the electric fields, even counteract the Rashba spin-orbit coupling effect. It is very interesting to find that we may deduce the strength of the Rashba effect through this phenomenon. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The magnetic properties of spin-valve pinned by FeMn layer were investigated after it was annealed at different temperatures. Its property was dependent on the vacuum annealing temperature. The pinning field could be increased through annealing at a temporature lower than 200degreesC;the pinning field would reduce and other properties be deteriorated as the annealing temperature was higher than 200degreesC; the pinning effect lost and giantmagnetic resistance disappeared at 300degreesC. Based on the results of AES analysis it was concluded that the diffusion in spin-valve multilayer was along grain boundary.
Resumo:
Shubnikov-de Haas measurements were carried out for In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor structures grown on GaAs substrates with different indium contents and/or different Si delta-doping concentrations. Zero-field (B-->0) spin splitting was found in samples with stronger conduction band bending in the InGaAs well. It was shown that the dominant spin splitting mechanism is attributed to the contribution by the Rashba term. We found that zero-field spin splitting not only occurs in the ground electron subband, but also in the first excited electron subband for a sample with Si delta-doping concentration of 6x10(12) cm(-2). We propose that this In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor structure grown on GaAs may be a promising candidate spin-polarized field-effect transistors. (C) 2002 American Institute of Physics.
Resumo:
Annealing was carried out at 950 and 1120 degreesC under various As pressure for undoped (ND) semi-insulating (SI) LECGaAs. The effects of annealing on native defects and electrical properties were investigated. Experimental results indicate that, after an annealing at 950 degreesC for 14 h under low As pressure, the Hall mobility decreases and the resistivity increases dramatically for the samples. These changes in electrical properties are due to the generation of intrinsic acceptor defects, and the generation of the intrinsic acceptor defects originates from the outdiffusion of As interstitial at high temperature. The generation of the intrinsic defects and these changes in electrical properties can be suppressed by increasing the applied As pressure during annealing. The concentration of the main donor defect E12 (AsGaVGa) can be decreased by about one order of magnitude by an evacuated annealing at 1120 degreesC for 2-8 h followed by a fast cooling. The decrease in E12 concentration can also be suppressed by increasing the As pressure during annealing.
Resumo:
It is believed that the highly dislocated region near the GaN/sapphire interface is a degenerate layer. In this paper a direct evidence for such a proposal is presented. By inserting a buried AlxGa1-xN (x > 0.5) isolating layer to separate the interface region from the bulk region, the background electron concentration can be significantly reduced, while care must be taken to guarantee that there is no degrading of Hall mobility when choosing the thickness of the isolating layer. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We report a strong circular photogalvanic effect (CPGE) in ZnO epitaxial films under interband excitation. It is observed that CPGE current is as large as 100 nA/W in ZnO, which is about one order in magnitude higher than that in InN film while the CPGE currents in GaN films are not detectable. The possible reasons for the above observations are the strong spin orbit coupling in ZnO or the inversed valence band structure of ZnO.
Resumo:
The magnetic properties of the Nd2Fe17-xSix intermetallic compounds are studied by means of spin-polarized supercell calculations in which the selected sites of substitution are close to the situations in real samples. It is shown that the average Fe moment increases with x and saturates near x = 3. This correlates quite well with the experimental dependence of Te on x. The difference between supercell and unit cell calculations are pointed out and the influence of Si atoms on the density of states of the nearby Fe atoms is emphasized. (C) 1997 American Institute of Physics.