974 resultados para heavy ion beam
Resumo:
The recrystallization behavior of Cu films electrodeposited under oscillatory conditions in the presence of plating additives was studied by means of secondary ion mass spectrometry (SIMS) and focused ion beam analysis. When combined with bis-(sodium-sulfopropyl)-disulfide (SPS), Imep levelers (polymerizates of imidazole and epichlorohydrin) show characteristic oscillations in the galvanostatic potential/time transient measurements. These are related to the periodic degradation and restoration of the active leveler ensemble at the interface. The leveler action relies on adduct formation between the Imep and MPS (mercaptopropane sulfonic acid)-stabilized CuI complexes that appear as intermediates of the copper deposition when SPS is present in the electrolyte. SIMS depth profiling proves that additives are incorporated into the growing film preferentially under transient conditions during the structural breakdown of the leveler ensemble and its subsequent restoration. In contrast, Cu films electrodeposited in the presence of a structurally intact Imep–CuI–MPS ensemble remain largely contamination free.
Resumo:
Fission fragment mass distributions were measured in heavy-ion induced fission of 238U. The mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and quasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model for the reactions of 30Si+238U and 34S+238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections of 263,264Sg and 267,268Hs, produced by 30Si+238U and 34S+238U, respectively. It is also suggested that sub-barrier energies can be used for heavy element synthesis.
Resumo:
Parylenes are poly(p-xylylene) polymers that are widely used as moisture barriers and in biomedicine because of their good biocompatibility. We have investigated MeV ion beam lithography using 16O+ ions for writing defined patterns in Parylene-C, which is evaluated as a coating material for the Cochlear Implant (CI) electrode array, a neuroprosthesis to treat some forms of deafness. Parylene-C and -F on silicon and glass substrates as well as 50 μm thick PTFE were irradiated to different fluences (1×1013-1×10161×1013-1×1016 1 MeV 16O+ ions cm−2) through aperture masks under high vacuum and a low pressure (<10−3 mbar) oxygen atmosphere. Biocompatibility of the irradiated and unirradiated surfaces was tested by cell-counting to determine the proliferation of murine spiral ganglion cells. The results reveal that an oxygen ion beam can be used to pattern Parylene-C and -F without using a liquid solvent developer in a similar manner to PTFE but with a ∼25× smaller removal rate. Biocompatibility tests showed no difference in cell adhesion between irradiated and unirradiated areas or ion fluence dependence. Coating the Parylene surface with an adhesion-promoting protein mixture had a much greater effect on cell proliferation.
Resumo:
Although frequently cured of Hodgkin lymphoma, adolescents and young adults can develop radiation induced second cancers. These patients could potentially benefit from scanned ion radiotherapy yet likely would require motion mitigation strategies. In theory, four-dimensional (4D) optimization of ion beam fields for individual motion states of respiration can enable superior sparing of healthy tissue near moving targets, compared to other motion mitigation strategies. Furthermore, carbon-ion therapy can sometimes provide greater relative biological effectiveness (RBE) for cell sterilization in a target but nearly equivalent RBE in tissue upstream of the target, compared to proton therapy. Thus, we expected that for some patients with Hodgkin lymphoma, carbon-ion therapy would reduce the predicted risk of second cancer incidence in the breast compared with proton therapy. The purpose of this work was to determine whether 4D-optimized carbon-ion therapy would significantly reduce the predicted risk of radiation induced second cancers in the breast for female Hodgkin lymphoma patients while preserving tumor control compared with proton therapy. To achieve our goals, we first investigated whether 4D-optimized carbon beam tracking could reduce dose to volumes outside a moving target compared with 3D-optimized carbon beam tracking while preserving target dose coverage. To understand the reliability of scanned carbon beam tracking, we studied the robustness of dose distributions in thoracic targets to uncertainties in patient motion. Finally, we investigated whether using carbon-ion therapy instead of proton therapy would significantly reduce the predicted risk of second cancer in the breast for a sample of Hodgkin lymphoma patients. We found that 4D-optimized ion beam tracking therapy can reduce the maximum dose to critical structures near a moving target by as much as 53%, compared to 3D-optimized ion beam tracking therapy. We validated these findings experimentally using a scanned carbon ion synchrotron and a motion phantom. We found scanned carbon beam tracking to be sensitive to a number of motion uncertainties, most notably phase delays in tracking, systematic spatial errors, and interfractional motion changes. Our findings indicate that a lower risk of second cancer in the breast might be expected for some Hodgkin lymphoma patients using carbon-ion therapy instead of proton therapy. For our reference scenario, we found the ratio of risk to be 0.77 ± 0.35 for radiogenic breast cancer after carbon-ion therapy versus proton therapy. Our findings were dependent on the RBE values for tumor induction and the radiosensitivity of breast tissue, as well as the physical dose distribution.
Resumo:
The thermal annealing of amorphous tracks of nanometer-size diameter generated in lithium niobate (LiNbO3) by Bromine ions at 45 MeV, i.e., in the electronic stopping regime, has been investigated by RBS/C spectrometry in the temperature range from 250°C to 350°C. Relatively low fluences have been used (<1012 cm−2) to produce isolated tracks. However, the possible effect of track overlapping has been investigated by varying the fluence between 3×1011 cm−2 and 1012 cm−2. The annealing process follows a two-step kinetics. In a first stage (I) the track radius decreases linearly with the annealing time. It obeys an Arrhenius-type dependence on annealing temperature with activation energy around 1.5 eV. The second stage (II) operates after the track radius has decreased down to around 2.5 nm and shows a much lower radial velocity. The data for stage I appear consistent with a solid-phase epitaxial process that yields a constant recrystallization rate at the amorphous-crystalline boundary. HRTEM has been used to monitor the existence and the size of the annealed isolated tracks in the second stage. On the other hand, the thermal annealing of homogeneous (buried) amorphous layers has been investigated within the same temperature range, on samples irradiated with Fluorine at 20 MeV and fluences of ∼1014 cm−2. Optical techniques are very suitable for this case and have been used to monitor the recrystallization of the layers. The annealing process induces a displacement of the crystalline-amorphous boundary that is also linear with annealing time, and the recrystallization rates are consistent with those measured for tracks. The comparison of these data with those previously obtained for the heavily damaged (amorphous) layers produced by elastic nuclear collisions is summarily discussed.
Resumo:
A simple illustrative physical model is presented to describe the kinetics of damage and amorphization by swiftheavyions (SHI) in LiNbO3. The model considers that every ion impact generates initially a defective region (halo) and a full amorphous core whose relative size depends on the electronic stopping power. Below a given stopping power threshold only a halo is generated. For increasing fluences the amorphized area grows monotonically via overlapping of a fixed number N of halos. In spite of its simplicity the model, which provides analytical solutions, describes many relevant features of the kinetic behaviour. In particular, it predicts approximate Avrami curves with parameters depending on stopping power in qualitative accordance with experiment that turn into Poisson laws well above the threshold value
Resumo:
Introduction Lithium-based ceramics (silicates, titanates, ?) possess a series of advantages as alternative over liquid lithium and lithium-lead alloys for fusion breeders. They have a sufficient lithium atomic density (up to 540 kg*m-3), high temperature stability (up to 1300 K), and good chemical compatibility with structural materials. Nevertheless, few research is made on the diffusion behavior of He and H isotopes through polycrystalline structures of porous ceramics which is crucial in order to understand the mobility of gas coolants as well as, the release of tritium. Moreover, in the operating conditions of actual breeder blanket concepts, the extraction rate of the helium produced during lithium transmutation can be affected by the composition and the structure of the near surface region modifying the performance of BB materials
Resumo:
Copper nitride is a metastable material which results very attractive because of their potential to be used in functional device. Cu3 N easily decomposes into Cu and N2 by annealing [1] or irradiation (electron, ions, laser) [2, 3]. Previous studies carried out in N-rich Cu3 N films irradiated with Cu at 42MeV evidence a very efficient sputtering of N whose yield (5×10 3 atom/ion), for a film with a thickness of just 100 nm, suggest that the origin of the sputtering has an electronic nature. This N depletion was observed to be responsible for new phase formation ( Cu2 O) and pure Cu [4]
Resumo:
Ordered arrays of III-Nitride nanocolumns are excellent candidates for the fabrication of nano-optoelectronic devices. Different technologies such as e-beam lithography or colloidal lithography, have been used to obtain ordered arrays. All these technologies have in common several processing steps that can affect the crystalline growth of the nanocolumns. In this work, we present a single lithographic step that permits to grow ordered GaN nanocolumns with different geometries. The patterning is based in the use of a focusedionbeam with different doses. With this method has been possible to create GaN nanopillars and nanocylinders
Resumo:
The propagation losses (PL) of lithium niobate optical planar waveguides fabricated by swift heavy-ion irradiation (SHI), an alternative to conventional ion implantation, have been investigated and optimized. For waveguide fabrication, congruently melting LiNbO3 substrates were irradiated with F ions at 20 MeV or 30 MeV and fluences in the range 1013–1014 cm−2. The influence of the temperature and time of post-irradiation annealing treatments has been systematically studied. Optimum propagation losses lower than 0.5 dB/cm have been obtained for both TE and TM modes, after a two-stage annealing treatment at 350 and 375∘C. Possible loss mechanisms are discussed.
Resumo:
The elemental distribution for as-received (AR), H implanted (AI) and post-implanted annealed (A) Eurofer and ODS-Eurofer steels has been characterized by means of micro Particle Induced X-ray Emission (μ-PIXE), micro Elastic Recoil Detection (μ-ERD) and Secondary Ion Mass Spectrometry (SIMS). The temperature and time-induced H diffusion has been analyzed by Resonance Nuclear Reaction Analysis (RNRA), Thermal Desorption Spectroscopy (TDS), ERDA and SIMS techniques. μ-PIXE measurements point out the presence of inhomogeneities in the Y distribution for ODS-Eurofer samples. RNRA and SIMS experiments evidence that hydrogen easily outdiffuses in these steels even at room temperature. ERD data show that annealing at temperatures as low as 300 °C strongly accelerates the hydrogen diffusion process, driving out up to the 90% of the initial hydrogen.
Resumo:
Ordered arrays of III-Nitride nanocolumns are excellent candidates for the fabrication of nano-optoelectronic devices. Different technologies such as e-beam lithography or colloidal lithography, have been used to obtain ordered arrays. All these technologies have in common several processing steps that can affect the crystalline growth of the nanocolumns. In this work, we present a single lithographic step that permits to grow ordered GaN nanocolumns with different geometries. The patterning is based in the use of a focused ion beam with different doses. With this method has been possible to create GaN nanopillars and nanocylinders.
Resumo:
Outline: • Motivation, aim • Complement waveguide data on silica • Optical data in quartz • Detailed analysis, i.e. both fluence kinetics and resolution • Efficiency of irradiation and analysis, samples, time... • Experimental set-up description • Reflectance procedure • Options: light source (lasers, white light..), detectors, configurations • Results and discussion • Comparative of amorphous and crystalline phases