862 resultados para Markov Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tests for business cycle asymmetries are developed for Markov-switching autoregressive models. The tests of deepness, steepness, and sharpness are Wald statistics, which have standard asymptotics. For the standard two-regime model of expansions and contractions, deepness is shown to imply sharpness (and vice versa), whereas the process is always nonsteep. Two and three-state models of U.S. GNP growth are used to illustrate the approach, along with models of U.S. investment and consumption growth. The robustness of the tests to model misspecification, and the effects of regime-dependent heteroscedasticity, are investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although financial theory rests heavily upon the assumption that asset returns are normally distributed, value indices of commercial real estate display significant departures from normality. In this paper, we apply and compare the properties of two recently proposed regime switching models for value indices of commercial real estate in the US and the UK, both of which relax the assumption that observations are drawn from a single distribution with constant mean and variance. Statistical tests of the models' specification indicate that the Markov switching model is better able to capture the non-stationary features of the data than the threshold autoregressive model, although both represent superior descriptions of the data than the models that allow for only one state. Our results have several implications for theoretical models and empirical research in finance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models for which the likelihood function can be evaluated only up to a parameter-dependent unknown normalizing constant, such as Markov random field models, are used widely in computer science, statistical physics, spatial statistics, and network analysis. However, Bayesian analysis of these models using standard Monte Carlo methods is not possible due to the intractability of their likelihood functions. Several methods that permit exact, or close to exact, simulation from the posterior distribution have recently been developed. However, estimating the evidence and Bayes’ factors for these models remains challenging in general. This paper describes new random weight importance sampling and sequential Monte Carlo methods for estimating BFs that use simulation to circumvent the evaluation of the intractable likelihood, and compares them to existing methods. In some cases we observe an advantage in the use of biased weight estimates. An initial investigation into the theoretical and empirical properties of this class of methods is presented. Some support for the use of biased estimates is presented, but we advocate caution in the use of such estimates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider the problem of estimating the number of times an air quality standard is exceeded in a given period of time. A non-homogeneous Poisson model is proposed to analyse this issue. The rate at which the Poisson events occur is given by a rate function lambda(t), t >= 0. This rate function also depends on some parameters that need to be estimated. Two forms of lambda(t), t >= 0 are considered. One of them is of the Weibull form and the other is of the exponentiated-Weibull form. The parameters estimation is made using a Bayesian formulation based on the Gibbs sampling algorithm. The assignation of the prior distributions for the parameters is made in two stages. In the first stage, non-informative prior distributions are considered. Using the information provided by the first stage, more informative prior distributions are used in the second one. The theoretical development is applied to data provided by the monitoring network of Mexico City. The rate function that best fit the data varies according to the region of the city and/or threshold that is considered. In some cases the best fit is the Weibull form and in other cases the best option is the exponentiated-Weibull. Copyright (C) 2007 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we deal with a Bayesian analysis for right-censored survival data suitable for populations with a cure rate. We consider a cure rate model based on the negative binomial distribution, encompassing as a special case the promotion time cure model. Bayesian analysis is based on Markov chain Monte Carlo (MCMC) methods. We also present some discussion on model selection and an illustration with a real dataset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multivariate skew-t distribution (J Multivar Anal 79:93-113, 2001; J R Stat Soc, Ser B 65:367-389, 2003; Statistics 37:359-363, 2003) includes the Student t, skew-Cauchy and Cauchy distributions as special cases and the normal and skew-normal ones as limiting cases. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis of repeated measures, pretest/post-test data, under multivariate null intercept measurement error model (J Biopharm Stat 13(4):763-771, 2003) where the random errors and the unobserved value of the covariate (latent variable) follows a Student t and skew-t distribution, respectively. The results and methods are numerically illustrated with an example in the field of dentistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main goal of this paper is to investigate a cure rate model that comprehends some well-known proposals found in the literature. In our work the number of competing causes of the event of interest follows the negative binomial distribution. The model is conveniently reparametrized through the cured fraction, which is then linked to covariates by means of the logistic link. We explore the use of Markov chain Monte Carlo methods to develop a Bayesian analysis in the proposed model. The procedure is illustrated with a numerical example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skew-normal distribution is a class of distributions that includes the normal distributions as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in a multivariate, null intercept, measurement error model [R. Aoki, H. Bolfarine, J.A. Achcar, and D. Leao Pinto Jr, Bayesian analysis of a multivariate null intercept error-in -variables regression model, J. Biopharm. Stat. 13(4) (2003b), pp. 763-771] where the unobserved value of the covariate (latent variable) follows a skew-normal distribution. The results and methods are applied to a real dental clinical trial presented in [A. Hadgu and G. Koch, Application of generalized estimating equations to a dental randomized clinical trial, J. Biopharm. Stat. 9 (1999), pp. 161-178].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This letter presents pseudolikelihood equations for the estimation of the Potts Markov random field model parameter on higher order neighborhood systems. The derived equation for second-order systems is a significantly reduced version of a recent result found in the literature (from 67 to 22 terms). Also, with the proposed method, a completely original equation for Potts model parameter estimation in third-order systems was obtained. These equations allow the modeling of less restrictive contextual systems for a large number of applications in a computationally feasible way. Experiments with both simulated and real remote sensing images provided good results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric ICC treats both correct and incorrect answers symmetrically, which results in a logical contradiction in ordering examinees on the ability scale. A data set corresponding to a mathematical test applied in Peruvian public schools is analyzed, where comparisons with other parametric IRT models also are conducted. Several model comparison criteria are discussed and implemented. The main conclusion is that the LPE and RLPE IRT models are easy to implement and seem to provide the best fit to the data set considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have considered a Bayesian approach for the nonlinear regression model by replacing the normal distribution on the error term by some skewed distributions, which account for both skewness and heavy tails or skewness alone. The type of data considered in this paper concerns repeated measurements taken in time on a set of individuals. Such multiple observations on the same individual generally produce serially correlated outcomes. Thus, additionally, our model does allow for a correlation between observations made from the same individual. We have illustrated the procedure using a data set to study the growth curves of a clinic measurement of a group of pregnant women from an obstetrics clinic in Santiago, Chile. Parameter estimation and prediction were carried out using appropriate posterior simulation schemes based in Markov Chain Monte Carlo methods. Besides the deviance information criterion (DIC) and the conditional predictive ordinate (CPO), we suggest the use of proper scoring rules based on the posterior predictive distribution for comparing models. For our data set, all these criteria chose the skew-t model as the best model for the errors. These DIC and CPO criteria are also validated, for the model proposed here, through a simulation study. As a conclusion of this study, the DIC criterion is not trustful for this kind of complex model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Before signing electronic contracts, a rational agent should estimate the expected utilities of these contracts and calculate the violation risks related to them. In order to perform such pre-signing procedures, this agent has to be capable of computing a policy taking into account the norms and sanctions in the contracts. In relation to this, the contribution of this work is threefold. First, we present the Normative Markov Decision Process, an extension of the Markov Decision Process for explicitly representing norms. In order to illustrate the usage of our framework, we model an example in a simulated aerospace aftermarket. Second, we specify an algorithm for identifying the states of the process which characterize the violation of norms. Finally, we show how to compute policies with our framework and how to calculate the risk of violating the norms in the contracts by adopting a particular policy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Market timing performance of mutual funds is usually evaluated with linear models with dummy variables which allow for the beta coefficient of CAPM to vary across two regimes: bullish and bearish market excess returns. Managers, however, use their predictions of the state of nature to deÞne whether to carry low or high beta portfolios instead of the observed ones. Our approach here is to take this into account and model market timing as a switching regime in a way similar to Hamilton s Markov-switching GNP model. We then build a measure of market timing success and apply it to simulated and real world data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation proposes a bivariate markov switching dynamic conditional correlation model for estimating the optimal hedge ratio between spot and futures contracts. It considers the cointegration between series and allows to capture the leverage efect in return equation. The model is applied using daily data of future and spot prices of Bovespa Index and R$/US$ exchange rate. The results in terms of variance reduction and utility show that the bivariate markov switching model outperforms the strategies based ordinary least squares and error correction models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)