811 resultados para Hierarchical clustering
Resumo:
I have designed and implemented a system for the multilevel verification of synchronous MOS VLSI circuits. The system, called Silica Pithecus, accepts the schematic of an MOS circuit and a specification of the circuit's intended digital behavior. Silica Pithecus determines if the circuit meets its specification. If the circuit fails to meet its specification Silica Pithecus returns to the designer the reason for the failure. Unlike earlier verifiers which modelled primitives (e.g., transistors) as unidirectional digital devices, Silica Pithecus models primitives more realistically. Transistors are modelled as bidirectional devices of varying resistances, and nodes are modelled as capacitors. Silica Pithecus operates hierarchically, interactively, and incrementally. Major contributions of this research include a formal understanding of the relationship between different behavioral descriptions (e.g., signal, boolean, and arithmetic descriptions) of the same device, and a formalization of the relationship between the structure, behavior, and context of device. Given these formal structures my methods find sufficient conditions on the inputs of circuits which guarantee the correct operation of the circuit in the desired descriptive domain. These methods are algorithmic and complete. They also handle complex phenomena such as races and charge sharing. Informal notions such as races and hazards are shown to be derivable from the correctness conditions used by my methods.
Resumo:
As the number of processors in distributed-memory multiprocessors grows, efficiently supporting a shared-memory programming model becomes difficult. We have designed the Protocol for Hierarchical Directories (PHD) to allow shared-memory support for systems containing massive numbers of processors. PHD eliminates bandwidth problems by using a scalable network, decreases hot-spots by not relying on a single point to distribute blocks, and uses a scalable amount of space for its directories. PHD provides a shared-memory model by synthesizing a global shared memory from the local memories of processors. PHD supports sequentially consistent read, write, and test- and-set operations. This thesis also introduces a method of describing locality for hierarchical protocols and employs this method in the derivation of an abstract model of the protocol behavior. An embedded model, based on the work of Johnson[ISCA19], describes the protocol behavior when mapped to a k-ary n-cube. The thesis uses these two models to study the average height in the hierarchy that operations reach, the longest path messages travel, the number of messages that operations generate, the inter-transaction issue time, and the protocol overhead for different locality parameters, degrees of multithreading, and machine sizes. We determine that multithreading is only useful for approximately two to four threads; any additional interleaving does not decrease the overall latency. For small machines and high locality applications, this limitation is due mainly to the length of the running threads. For large machines with medium to low locality, this limitation is due mainly to the protocol overhead being too large. Our study using the embedded model shows that in situations where the run length between references to shared memory is at least an order of magnitude longer than the time to process a single state transition in the protocol, applications exhibit good performance. If separate controllers for processing protocol requests are included, the protocol scales to 32k processor machines as long as the application exhibits hierarchical locality: at least 22% of the global references must be able to be satisfied locally; at most 35% of the global references are allowed to reach the top level of the hierarchy.
Resumo:
The HMAX model has recently been proposed by Riesenhuber & Poggio as a hierarchical model of position- and size-invariant object recognition in visual cortex. It has also turned out to model successfully a number of other properties of the ventral visual stream (the visual pathway thought to be crucial for object recognition in cortex), and particularly of (view-tuned) neurons in macaque inferotemporal cortex, the brain area at the top of the ventral stream. The original modeling study only used ``paperclip'' stimuli, as in the corresponding physiology experiment, and did not explore systematically how model units' invariance properties depended on model parameters. In this study, we aimed at a deeper understanding of the inner workings of HMAX and its performance for various parameter settings and ``natural'' stimulus classes. We examined HMAX responses for different stimulus sizes and positions systematically and found a dependence of model units' responses on stimulus position for which a quantitative description is offered. Interestingly, we find that scale invariance properties of hierarchical neural models are not independent of stimulus class, as opposed to translation invariance, even though both are affine transformations within the image plane.
Resumo:
We present a tree-structured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM's). Learning is treated as a maximum likelihood problem; in particular, we present an Expectation-Maximization (EM) algorithm for adjusting the parameters of the architecture. We also develop an on-line learning algorithm in which the parameters are updated incrementally. Comparative simulation results are presented in the robot dynamics domain.
Resumo:
Estudi, disseny i implementació de diferents tècniques d’agrupament de fibres (clustering) per tal d’integrar a la plataforma DTIWeb diferents algorismes de clustering i tècniques de visualització de clústers de fibres de forma que faciliti la interpretació de dades de DTI als especialistes
Resumo:
Resumen tomado de la publicaci??n. Resumen tambi??n en ingl??s
A new approach to segmentation based on fusing circumscribed contours, region growing and clustering
Resumo:
One of the major problems in machine vision is the segmentation of images of natural scenes. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. The main contours of the scene are detected and used to guide the posterior region growing process. The algorithm places a number of seeds at both sides of a contour allowing stating a set of concurrent growing processes. A previous analysis of the seeds permits to adjust the homogeneity criterion to the regions's characteristics. A new homogeneity criterion based on clustering analysis and convex hull construction is proposed
Resumo:
In image segmentation, clustering algorithms are very popular because they are intuitive and, some of them, easy to implement. For instance, the k-means is one of the most used in the literature, and many authors successfully compare their new proposal with the results achieved by the k-means. However, it is well known that clustering image segmentation has many problems. For instance, the number of regions of the image has to be known a priori, as well as different initial seed placement (initial clusters) could produce different segmentation results. Most of these algorithms could be slightly improved by considering the coordinates of the image as features in the clustering process (to take spatial region information into account). In this paper we propose a significant improvement of clustering algorithms for image segmentation. The method is qualitatively and quantitative evaluated over a set of synthetic and real images, and compared with classical clustering approaches. Results demonstrate the validity of this new approach
Resumo:
A finales de 2009 se emprendió un nuevo modelo de segmentación de mercados por conglomeraciones o clústers, con el cual se busca atender las necesidades de los clientes, advirtiendo el ciclo de vida en el cual se encuentran, realizando estrategias que mejoren la rentabilidad del negocio, por medio de indicadores de gestión KPI. Por medio de análisis tecnológico se desarrolló el proceso de inteligencia de la segmentación, por medio del cual se obtuvo el resultado de clústers, que poseían características similares entre sí, pero que diferían de los otros, en variables de comportamiento. Esto se refleja en el desarrollo de campañas estratégicas dirigidas que permitan crear una estrecha relación de fidelidad con el cliente, para aumentar la rentabilidad, en principio, y fortalecer la relación a largo plazo, respondiendo a la razón de ser del negocio
Resumo:
An emerging consensus in cognitive science views the biological brain as a hierarchically-organized predictive processing system. This is a system in which higher-order regions are continuously attempting to predict the activity of lower-order regions at a variety of (increasingly abstract) spatial and temporal scales. The brain is thus revealed as a hierarchical prediction machine that is constantly engaged in the effort to predict the flow of information originating from the sensory surfaces. Such a view seems to afford a great deal of explanatory leverage when it comes to a broad swathe of seemingly disparate psychological phenomena (e.g., learning, memory, perception, action, emotion, planning, reason, imagination, and conscious experience). In the most positive case, the predictive processing story seems to provide our first glimpse at what a unified (computationally-tractable and neurobiological plausible) account of human psychology might look like. This obviously marks out one reason why such models should be the focus of current empirical and theoretical attention. Another reason, however, is rooted in the potential of such models to advance the current state-of-the-art in machine intelligence and machine learning. Interestingly, the vision of the brain as a hierarchical prediction machine is one that establishes contact with work that goes under the heading of 'deep learning'. Deep learning systems thus often attempt to make use of predictive processing schemes and (increasingly abstract) generative models as a means of supporting the analysis of large data sets. But are such computational systems sufficient (by themselves) to provide a route to general human-level analytic capabilities? I will argue that they are not and that closer attention to a broader range of forces and factors (many of which are not confined to the neural realm) may be required to understand what it is that gives human cognition its distinctive (and largely unique) flavour. The vision that emerges is one of 'homomimetic deep learning systems', systems that situate a hierarchically-organized predictive processing core within a larger nexus of developmental, behavioural, symbolic, technological and social influences. Relative to that vision, I suggest that we should see the Web as a form of 'cognitive ecology', one that is as much involved with the transformation of machine intelligence as it is with the progressive reshaping of our own cognitive capabilities.
Resumo:
Similar pathophysiological mechanisms within autoimmune diseases have stimulated searches for common genetic roots. Polyautoimmunity is defined as the presence of more than one autoimmune disease in a single patient. When three or more autoimmune diseases coexist, this condition is called multiple autoimmune syndrome (MAS). We analyzed the presence of polyautoimmunity in 1,083 patients belonging to four autoimmune disease cohorts. Polyautoimmunity was observed in 373 patients (34.4%). Autoimmune thyroid disease (AITD) and Sjögren's syndrome (SS) were the most frequent diseases encountered. Factors significantly associated with polyautoimmunity were female gender and familial autoimmunity. Through a systematic literature review, an updated search was done for all MAS cases (January 2006–September 2011). There were 142 articles retrieved corresponding to 226 cases. Next, we performed a clustering analysis in which AITD followed by systemic lupus erythematosus and SS were the most hierarchical diseases encountered. Our results indicate that coexistence of autoimmune diseases is not uncommon and follows a grouping pattern. Polyautoimmunity is the term proposed for this association of disorders, which encompasses the concept of a common origin for these diseases.
Resumo:
Resumen tomado de la publicación
Resumo:
Our purpose is to provide a set-theoretical frame to clustering fuzzy relational data basically based on cardinality of the fuzzy subsets that represent objects and their complementaries, without applying any crisp property. From this perspective we define a family of fuzzy similarity indexes which includes a set of fuzzy indexes introduced by Tolias et al, and we analyze under which conditions it is defined a fuzzy proximity relation. Following an original idea due to S. Miyamoto we evaluate the similarity between objects and features by means the same mathematical procedure. Joining these concepts and methods we establish an algorithm to clustering fuzzy relational data. Finally, we present an example to make clear all the process
Resumo:
The article examines the structure of the collaboration networks of research groups where Slovenian and Spanish PhD students are pursuing their doctorate. The units of analysis are student-supervisor dyads. We use duocentred networks, a novel network structure appropriate for networks which are centred around a dyad. A cluster analysis reveals three typical clusters of research groups. Those which are large and belong to several institutions are labelled under a bridging social capital label. Those which are small, centred in a single institution but have high cohesion are labelled as bonding social capital. Those which are small and with low cohesion are called weak social capital groups. Academic performance of both PhD students and supervisors are highest in bridging groups and lowest in weak groups. Other variables are also found to differ according to the type of research group. At the end, some recommendations regarding academic and research policy are drawn
Resumo:
En aquesta tesi s’estudia el problema de la segmentació del moviment. La tesi presenta una revisió dels principals algoritmes de segmentació del moviment, s’analitzen les característiques principals i es proposa una classificació de les tècniques més recents i importants. La segmentació es pot entendre com un problema d’agrupament d’espais (manifold clustering). Aquest estudi aborda alguns dels reptes més difícils de la segmentació de moviment a través l’agrupament d’espais. S’han proposat nous algoritmes per a l’estimació del rang de la matriu de trajectòries, s’ha presenta una mesura de similitud entre subespais, s’han abordat problemes relacionats amb el comportament dels angles canònics i s’ha desenvolupat una eina genèrica per estimar quants moviments apareixen en una seqüència. L´ultima part de l’estudi es dedica a la correcció de l’estimació inicial d’una segmentació. Aquesta correcció es du a terme ajuntant els problemes de la segmentació del moviment i de l’estructura a partir del moviment.