A Homogeneous Set-Theoretical Frame for Clustering Fuzzy Relational Data


Autoria(s): Clara i Lloret, Narcís
Data(s)

01/08/2007

Resumo

Our purpose is to provide a set-theoretical frame to clustering fuzzy relational data basically based on cardinality of the fuzzy subsets that represent objects and their complementaries, without applying any crisp property. From this perspective we define a family of fuzzy similarity indexes which includes a set of fuzzy indexes introduced by Tolias et al, and we analyze under which conditions it is defined a fuzzy proximity relation. Following an original idea due to S. Miyamoto we evaluate the similarity between objects and features by means the same mathematical procedure. Joining these concepts and methods we establish an algorithm to clustering fuzzy relational data. Finally, we present an example to make clear all the process

Formato

application/pdf

Identificador

Clara, N. (2007). A Homogeneous Set-Theoretical Frame for Clustering Fuzzy Relational Data. Fourth International Conference on Fuzzy Systems and Knowledge Discovery : 2007 : FSKD 2007, 1, 712 - 716. Recuperat 28 setembre 2010, a http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4406016

978-0-7695-2874-8

http://hdl.handle.net/10256/3059

http://dx.doi.org/10.1109/FSKD.2007.44

Idioma(s)

eng

Publicador

IEEE

Relação

Reproducció digital del document publicat a: http://dx.doi.org/10.1109/FSKD.2007.44

© Fourth International Conference on Fuzzy Systems and Knowledge Discovery : 2007 : FSKD 2007, 2007, vol. 1, p. 712-716

Articles publicats (D-IMA)

Direitos

Tots els drets reservats

Palavras-Chave #Conjunts borrosos #Conjunts, Teoria de #Sistemes borrosos #Fuzzy sets #Set theory
Tipo

info:eu-repo/semantics/article