864 resultados para Electronic alarm systems
Resumo:
This paper describes the design and development cycle of a 3D biochip separator and the modelling analysis of flow behaviour in the biochip microchannel features. The focus is on identifying the difference between 2D and 3D implementations as well as developing basic forms of 3D microfluidic separators. Five variants, based around the device are proposed and analysed. These include three variations of the branch channels (circular, rectangular, disc) and two variations of the main channel (solid and concentric). Ignoring the initial transient behaviour and assuming steady state flow has been established, the efficiencies of the flow between the main and side channels for the different designs are analysed and compared with regard to relevant biomicrofluidic laws or effects (bifurcation law, Fahraeus effect, cell-free phenomenon, bending channel effect and laminar flow behaviour). The modelling results identify flow features in microchannels, a constriction and bifurcations and show detailed differences in flow fields between the various designs. The manufacturing process using injection moulding for the initial base case design is also presented and discussed. The work reported here is supported as part of the UK funded 3D-MINTEGRATION project. © 2010 IEEE.
Resumo:
An electronic load interface (ELI) for improving the operational margin of a photovoltaic (PV) dual-converter system under dynamic conditions is presented. The ELI - based on a modified buck-boost converter - interfaces the output of the converters and the load system. It improves the operational margin of the PV dual-converter system by extending the conditions under which the dual-converter system operates at the maximum power point. The ELI is activated as and when needed, so as minimise system losses. By employing the ELI, utilisation and efficiency of a PV dual-converter system increases. In general, the concept of the ELI can be applied to multi-converter PV systems - such as multi-converter inverters, and multi-converter DC-DC converter systems - for performance and efficiency improvement. © 2013 The Institution of Engineering and Technology.
Resumo:
We have theoretically investigated the energy band structures of two typical magnetic superlattices formed by perpendicular or parallel magnetization ferromagnetic stripes periodically deposited on a two-dimensional electron gas (2DEG), where the magnetic profile in the perpendicular magnetization is of inversion anti-symmetry, but of inversion symmetry in parallel magnetization, respectively. We have shown that the energy bands of perpendicular magnetization display the spin-splitting and transverse wave-vector symmetry, while the energy bands of the parallel magnetization exhibit spin degeneration and transverse wave-vector asymmetry. These distinguishing spin-dependent and transverse wave-vector asymmetry features are essential for future spintronics devices applications. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Based on the effective-mass model, the lower energies of the electron and the hole of ZnO/MgxZn1-xO superlattices are calculated. Because of the mismatch of the lattice constant between the ZnO well and the MgxZn1-xO barrier, piezoelectric and spontaneous polarization exist in ZnO/MgxZn1-xO superlattices and a macroscopical internal electric held is found when well width L-w >4 nm and Mg concentration x > 0.2. The parameters of ZnO/MgxZn1-xO superlattices such as lattice constant, band offset, etc. are also proposed. Through calculations, we found the internal electric field can change the lowest energies of the electron and hole to 105.4 and 85.1 meV when well width L-w up to 70 angstrom, which will influence the electronic and optical properties of ZnO/MgxZn1-xO superlattices greatly, while the Rashba effect from the internal electric field is so small that it can be neglected. The ground state exciton energies with different Mg concentration x are also calculated by variational method, our results are very close to the experimental results when Mg concentration x <= 0.3. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We have studied the single-electron and two-electron vertically assembled quantum disks in an axial magnetic field using the effective mass approximation. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate the six energy levels of the single-electron quantum disks and the two lowest energy levels of the two-electron quantum disks in an axial magnetic field. The change of the magnetic field strongly modifies the electronic structures as an effective potential, leading to the splitting of the levels and the crossings between the levels. The effect of the vertical alignment on the electronic structures is discussed. It is demonstrated that the switching of the ground-state spin exists between S=0 and S=1. The energy difference DeltaE between the lowest S=0 and S=1 states is shown as a function of the axial magnetic field. It is also found that the variation of the energy difference between the lowest S=0 and S=1 states in the strong-B S=0 state is fairly linear. Our results provide a possible realization for a qubit to be fabricated by current growth techniques. (C) 2004 American Institute of Physics.
Resumo:
We have studied the electronic structure of vertically assembled quantum discs in a magnetic field with varying orientation using the effective mass approximation. We calculate the four energy levels of single-electron quantum discs and the two lowest energy levels of two-electron quantum discs in a magnetic field with varying orientation. The change of the magnetic field as an effective potential strongly modifies the electronic structure, leading to splittings of the levels and anticrossings between the levels. The calculated results also demonstrate the switching between the ground states with the total spin S = 0 and 1. The switching induces a qubit controlled by varying the orientation of the magnetic field.
Resumo:
We have studied a two-electron quantum dot molecule in a magnetic field. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate two lowest energy levels of the two-electron quantum dot molecule in a magnetic field. Our results show that the electron interactions are significant, as they can change the total spin of the two-electron ground state of the system by adjusting the magnetic field between S = 0 and S = 1. The energy difference DeltaE between the lowest S = 0 and S = 1 states is shown as a function of the axial magnetic field. We found that the energy difference between the lowest S = 0 and S = 1 states in the strong-B S = 0 state varies linearly. Our results provide a possible realization for a qubit to be fabricated by current growth techniques.
Resumo:
We propose a method for uniformly calculating the electronic states of a hydrogenic donor impurity in low-dimensional semiconductor nano-structures in the framework of effective-mass envelope-function theory, and we study the electronic structures of this systems. Compared to previous methods, our method has the following merits: (a) It can be widely applied in the calculation of the electronic states of hydrogenic donor impurities in nano-structures of various shapes; (b) It can easily be extended to study the effects of external fields and other complex cases; (c) The excited states are more easily calculated than with the variational method; (d) It is convenient to calculate the change of the electronic states with the position of a hydrogenic donor impurity in nano-structures; (e) The binding energy can be calculated explicitly. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The electronic structure and optical properties of ZnO wurtzite quantum wires with radius R >= 3 nm are studied in the framework of six-band effective-mass envelope function theory. The hole effective-mass parameters of ZnO wurtzite material are calculated by the empirical pseudopotential method. It is found that the electron states are either two-fold or four-fold degenerate. There is a dark exciton effect when the radius R of the ZnO quantum wires is in the range of [3,19.1] nm (dark range in our model). The dark ranges of other wurtzite semiconductor quantum wires are calculated for comparison. The dark range becomes smaller when the |Delta(so)| is larger, which also happens in the quantum-dot systems. The linear polarization factor of ZnO quantum wires is larger when the temperature is higher.
Resumo:
The shape dependence of electronic structure, electron g factors in the presence of the external magnetic field of InSb quantum ellipsoids are investigated in the framework of eight-band effective-mass approximation. It is found that as the increasing aspect ratio e, the electron states with P character split into three doublets for the different physical interaction and the light-hole states with S character come up to the top of valence bands at e = 2.6 in comparison with the heavy-hole states. In the presence of the external magnetic field, the energy splits of electron states are different for their wave function distribution direction, and the hole ground state remain optical active for a suitable aspect ratio. The electron g factors of InSb spheres decrease with increasing radius, and have the value of about two for the smallest radius, about -47.2 for sufficiently larger radius, similar to the bulk material case. Actually, the electron g factors decrease as any one of the three dimensions increase. The more dimensions increase, the more g factors decrease. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimensions. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The electronic structure, electron and hole g factors and optical properties of CdTe quantum ellipsoids are investigated, in the framework of eight-band effective-mass approximation. It is found that the light-hole states come down in comparison with the heavy-hole states when the spheres are elongated, and become the lowest states of valence band. When the aspect ratio of the ellipsoid length to diameter (e) changes from smaller than 1 to larger than 1, the linear polarization factors change from negative to positive. The electron g factors of CdTe spheres decrease with increasing radius, and are nearly 2 when the radius is very small. Actually, as some of the three dimensions increase, the electron g factors decrease. More dimensions increase, the g factors decrease. more. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimension. The light-hole and heavy-hole g factors of quantum spheres are equal, and change from 0.88 to -1.14 with increasing radius. When e < 1 (e > 1) the light-hole g factor is smaller (larger) than the heavy-hole g factor. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Based on the Buttiker dephasing model, we propose an analytical scattering matrix approach to the long-range electron transfer phenomena. The present efficient scheme smoothly interpolates between the superexchange and the sequential hopping mechanisms. Various properties such as the drastic dephasing-assisted enhancement and turnover behaviors are demonstrated in good agreement with those obtained via the dynamical reduced density-matrix methods. These properties are further elucidated as results of the interplay among the dephasing strength, the tunneling parameter, and the bridge length of the electron transfer system. (C) 2001 American Institute of Physics.
Resumo:
Deep-level transient spectroscopy and photoluminescence studies have been carried out on structures containing self-assembled InAs quantum dots formed in GaAs matrices. The use of n- and p-type GaAs matrices allows us to study separately electron and hole levels in the quantum dots by the deep-level transient spectroscopy technique. From analysis of deep-level transient spectroscopy measurements it follows that the quantum dots have electron levels 130 meV below the bottom of the GaAs conduction band and heavy-hole levels at 90 meV above the top of the GaAs valence band. Combining with the photoluminescence results, the band structures of InAs and GaAs have been determined. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Liquid nitrogen is very important for MBE system. Most MBE systems use the liquid nitrogen to absorb the impurity molecules. If MBE cryoshroud is lack of liquid nitrogen, the pressure of the growth chamber will grow. This will affect the film quality. But too much liquid nitrogen is a waste. We have developed a liquid nitrogen flowrate alarm system to monitor the liquid nitrogen status in MBE cryoshroud. In this method, a temperature sensor is placed at the end of the cryoshroud. The temperature varies with changing of the liquid nitrogen status in cryoshroud. If the liquid nitrogen level in the cryoshroud is too low or too high, the LNFA will send out an alarm to warn the user to adjust the liquid nitrogen flowrate. In our experiments, we found this method works well, and the temperature responds sensitively. With the help of this system, people can view the liquid nitrogen status of the entire growth process. Compare with other method. it is very cheap.
Resumo:
Deep-level transient spectroscopy and photoluminescence studies have been carried out on structures containing self-assembled InAs quantum dots formed in GaAs matrices. The use of n- and p-type GaAs matrices allows us to study separately electron and hole levels in the quantum dots by the deep-level transient spectroscopy technique. From analysis of deep-level transient spectroscopy measurements it follows that the quantum dots have electron levels 130 meV below the bottom of the GaAs conduction band and heavy-hole levels at 90 meV above the top of the GaAs valence band. Combining with the photoluminescence results, the band structures of InAs and GaAs have been determined. (C) 2000 Elsevier Science B.V. All rights reserved.