999 resultados para ELECTRODE POSITION
Radio over free space optical link using a directly modulated two-electrode high power tapered laser
Resumo:
The analog modulation performance of a high-power two-electrode tapered laser is investigated. A 25dB dynamic range for 2.4GHz 802.11g signals is achieved with a 26dB loss budget, showing a >1km free space range is possible. © 2010 Optical Society of America.
Gigabit/s modulation of twin-electrode high-brightness tapered laser with high modulation efficiency
Resumo:
Simultaneous high modulation speed and high modulation efficiency operation of a two-electrode tapered laser is reported. 1Gb/s direct data modulation is achieved with 68mA applied current swing for a 0.95W output optical modulation amplitude. © 2009 Optical Society of America.
Resumo:
In the design of capacitive touch-screen panels, electrodes are patterned to improve touch sensitivity. In this paper, we analyze the relationship between electrode patterns and touch sensitivity. An approach is presented where simulations are used to measure the sensitivity of touch-screen panels based on capacitance changes for various electrode patterns. Touch sensitivity increases when the touch object is positioned in close proximity to fringing electric fields generated by the patterned electrodes. Three new electrode patterns are proposed to maximize field fringing in order to increase touch sensitivity by purely electrode patterning means. Simulations showed an increased touch sensitivity of up to 5.4%, as compared with the more conventional interlocking diamonds pattern. Here, we also report empirical findings for fabricated touch-screen panels. © 2005-2012 IEEE.
Resumo:
The assessment of settlement induced damage on buildings during the preliminary phase of tunnel excavation projects, is nowadays receiving greater attention. Analyses at different levels of detail are performed on the surface building in proximity to the tunnel, to evaluate the risk of structural damage and the need of mitigation measures. In this paper, the possibility to define a correlation between the main parameters that influence the structural response to settlement and the potential damage is investigated through numerical analysis. The adopted 3D finite element model allows to take into account important features that are neglected in more simplified approaches, like the soil-structure interaction, the nonlinear behaviour of the building, the three dimensional effect of the tunnelling induced settlement trough and the influence of openings in the structure. Aim of this approach is the development of an improved classification system taking into account the intrinsic vulnerability of the structure, which could have a relevant effect on the final damage assessment. Parametric analyses are performed, focusing on the effect of the orientation and the position of the structure with respect to the tunnel. The obtained results in terms of damage are compared with the Building Risk Assessment (BRA) procedure. This method was developed by Geodata Engineering (GDE) on the basis of empirical observations and building monitoring and applied during the construction of different metro lines in urban environment. The comparison shows a substantial agreement between the two procedures on the influence of the analysed parameters. The finite element analyses suggest a refinement of the BRA procedure for pure sagging conditions.
Resumo:
The graphite electrode sludge was sampled from a huge chloralkali plant in central China. The total level of PCDD/F was found as high as 378.85 mu g/kg sludge (dry weight). The patterns of PCDD/F in each homologue indicated the predominance of tetra- to octa-chlorinated PCDFs, Furthermore, the toxic 2,3,7,8-substituted PCDFs constituted over 80% of the total PCDFs in the sludge and the corresponding PCDDs were only at 15 mu g/kg level. The calculated value of the international toxic equivalence (I-TEQ) in sludge was 21.65 mu g/kg sludge (dry weight). This typical "dioxin chloralkali pattern" was apparently identified in the sediments near the effluent outlet of the chloralkali plant.
Resumo:
Ce-doped Bi12SiO20 single crystal with size of phi10mm x 40mm was successfully grown in space on board of the spacecraft Shenzhou No.3. The surface morphology of space-grown crystal is different from that of ground-grown crystal The space- and ground-grown crystals were measured by X-ray rocking curves, absorption spectra and micro-Raman spectra. The results show that the quality of Ce-deped crystal grown in space is better than that of the ground-grown one. The effect of doping on optical properties of BSO grown in space is evident in comparison with the ground-grown crystal.
Resumo:
Electrolyte electroreflectance spectra of the near-surface strained-layer In0.15Ga0.85As/GaAs double single-quantum-well electrode have been studied at different biases in non-aqueous solutions of ferrocene and acetylferrocene. The optical transitions, the Franz-Keldysh oscillations (FKOs) and the quantum confined Stark effects (QCSE) of In0.15Ga0.85As/GaAs quantum well electrodes are analyzed. Electric field strengths at the In0.15Ga0.85As/GaAs interface are calculated in both solutions by a fast Fourier transform analysis of FKOs. A dip is exhibited in the electric field strength versus bias (from 0 to 1.2 V) curve in ferrocene solution. A model concerning the interfacial tunneling transfer of electrons is used to explain the behavior of the electric field. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A novel composite InxGa1-xAs/GaAs/GaAs/AlxGa1-xAs multiple quantum well material with different well widths was studied as a new kind of photoelectrode in a photoelectrochemical cell. The photocurrent spectrum and photocurrent-electrode potential curve were measured in ferrocene nonaqueous solution. Pronounced quantization effects and strong exciton absorption were observed in the photocurrent spectrum. The effects of surface states and interfacial states on the photocurrent-electrode potential curve are discussed. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Test strip detectors of 125 mu m, 500 mu m, and 1 mm pitches with about 1 cm(2) areas have been made on medium-resistivity silicon wafers (1.3 and 2.7 k Ohm cm). Detectors of 500 mu m pitch have been tested for charge collection and position precision before and after neutron irradiation (up to 2 x 10(14) n/cm(2)) using 820 and 1030 nm laser lights with different beam-spot sizes. It has been found that for a bias of 250 V a strip detector made of 1.3 k Ohm cm (300 mu m thick) can be fully depleted before and after an irradiation of 2 x 10(14) n/cm(2). For a 500 mu m pitch strip detector made of 2.7 k Ohm cm tested with an 1030 nm laser light with 200 mu m spot size, the position reconstruction error is about 14 mu m before irradiation, and 17 mu m after about 1.7 x 10(13) n/cm(2) irradiation. We demonstrated in this work that medium resistivity silicon strip detectors can work just as well as the traditional high-resistivity ones, but with higher radiation tolerance. We also tested charge sharing and position reconstruction using a 1030 nm wavelength (300 mu m absorption length in Si at RT) laser, which provides a simulation of MIP particles in high-physics experiments in terms of charge collection and position reconstruction, (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In order to understand the relationship between phospholipid molecular structures and their olfactory responses to odorants, we designed and synthesized four phosphatidylcholine analogues with different long hydrocarbon (CH) chains and selected three natural phospholipids with different head-groups. By using interdigital electrodes (IEs) as olfactory sensors (OSs), we measured the responses of the Ifs coated with these seven different lipid membranes to four alcohol vapors in a gas flow system. The Ifs voltage changes were recorded and the voltage-relative saturate vapor pressure (V-P/P degrees) curves were also plotted. It was found that with a methyl (-CH3) placed at the C-8 position in the 18-carbon chain, the olfactory responses could be improved about ten times and with conjugated double bonds (C=C) in the long chains, the sensitivity could be increased by 3 similar to 4 orders of magnitude. As to head-groups, choline is preferred over ethanolamine and serine in phospholipid structures in terms of high olfactory sensitivity: These results are expected to be useful in further designing and manufacturing lipid-mimicking OSs. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The quantum-confined Stark effect and the Franz-Keldysh oscillation of a single quantum well (SQW) GaAs/AlxGa1-xAs electrode were studied in non-aqueous hydroquinone + benzoquinone solution with electrolyte electroreflectance spectroscopy. By investigation of the relation of the quantum-confined Stark effect and the Franz-Keldysh oscillation with applied external bias, the interfacial behaviour of an SQW electrode was analysed. (C) 1997 Elsevier Science S.A.
Resumo:
A promising approach for positioning of InAs islands on (110)GaAs is demonstrated. By combining self-assembly of quantum dots with solid source molecular beam epitaxy (MBE) on cleaved edge of InGaAs/GaAs superlattice (SL), linear alignment of InAs islands on the InGaAs strain layers have been fabricated The cleaved edge of InGaAs/GaAs SL acts as strain nanopattern for InAs selective growth. Indium atoms incident on the surface will preferentially migrate to InGaAs regions where favorable bonding sites are available. The strain nanopattern's effect is studied by the different indium fraction and thickness of InxGa1-xAs/GaAs SL. The ordering of the InAs islands is found to depend on the properties of the underlying InGaAs strain layers.
Resumo:
A glutamate biosensor based on the electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH), which was generated by the enzymatic reaction, was developed via employing a single-walled carbon nanotubes/thionine (Th-SWNTs) nanocomposite as a mediator and an enzyme immobilization matrix. The biosensor, which was fabricated by immobilizing glutamate dehydrogenase (GIDH) on the surface of Th-SWNTs, exhibited a rapid response (ca. 5 s), a low detection limit (0.1 mu M), a wide and useful linear range (0.5-400 mu M), high sensitivity (137.3 +/- 15.7) mu A mM(-1) cm(-2), higher biological affinity, as well as good stability and repeatability. In addition, the common interfering species, such as ascorbic acid, uric acid, and 4-acetamidophenol, did not cause any interference due to the use of a low operating potential (190 mV vs. NHE). The biosensor can be used to quantify the concentration of glutamate in the physiological level. The Th-SWNTs system represents a simple and effective approach to the integration of dehydrogenase and electrodes, which can provide analytical access to a large group of enzymes for wide range of bioelectrochemical applications including biosensors and biofuel cells.