1000 resultados para CIENCIA DE LA COMPUTACIÓN


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose an original method to geoposition an audio/video stream with multiple emitters that are at the same time receivers of the mixed signal. The obtained method is suitable when a list of positions within a known area is encoded with precision tailored to the visualization capabilities of the target device. Nevertheless, it is easily adaptable to new precision requirements, as well as parameterized data precision. This method extends a previously proposed protocol, without incurring in any performance penalty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To provide more efficient and flexible alternatives for the applications of secret sharing schemes, this paper describes a threshold sharing scheme based on exponentiation of matrices in Galois fields. A significant characteristic of the proposed scheme is that each participant has to keep only one master secret share which can be used to reconstruct different group secrets according to the number of threshold values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose a neural network model to simplify and 2D meshes. This model is based on the Growing Neural Gas model and is able to simplify any mesh with different topologies and sizes. A triangulation process is included with the objective to reconstruct the mesh. This model is applied to some problems related to urban networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A TimeBar for JavaVis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Spline for camera movement in JavaVis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Spline for camera movement in JavaVis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El profesorado de la red docente, que forma parte de la comisión académica del Máster, realizó durante el curso 2011/12 un proyecto para el estudio de los indicadores de calidad del Máster, en función de los indicadores de calidad de las Agencias acreditadoras y dependiendo de las tasas de éxito y eficacias durante el primer curso de implantación del Máster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El reto de implantar los nuevos grados exige un continuado esfuerzo de coordinación de las asignaturas de cada curso y de los diferentes cursos entres sí. En este trabajo se presentan los resultados de los diferentes proyectos que se han realizado para coordinar las asignaturas de los tres primeros cursos del Grado en Ingeniería en Sonido e Imagen en Telecomunicación de la Escuela Politécnica Superior. Además se analiza la coordinación de los proyectos entre sí, analizando los cambios surgidos en las fichas de las asignaturas, evaluación, metodología, etc. También se presenta una puesta en común con los coordinadores de todos los cursos para realizar las recomendaciones de matriculación a los estudiantes que realizan su matrícula a tiempo parcial o no superan cada curso todos los créditos matriculados. Y por último, se estudia la continuidad con los contenidos de las asignaturas que comienzan su implantación en el siguiente curso y por otro lado la coordinación en la evaluación para eliminar las numerosas coincidencias de evaluaciones continuas, de diferentes actividades en cada semana.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several recent works deal with 3D data in mobile robotic problems, e.g., mapping. Data comes from any kind of sensor (time of flight, Kinect or 3D lasers) that provide a huge amount of unorganized 3D data. In this paper we detail an efficient approach to build complete 3D models using a soft computing method, the Growing Neural Gas (GNG). As neural models deal easily with noise, imprecision, uncertainty or partial data, GNG provides better results than other approaches. The GNG obtained is then applied to a sequence. We present a comprehensive study on GNG parameters to ensure the best result at the lowest time cost. From this GNG structure, we propose to calculate planar patches and thus obtaining a fast method to compute the movement performed by a mobile robot by means of a 3D models registration algorithm. Final results of 3D mapping are also shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several recent works deal with 3D data in mobile robotic problems, e.g. mapping or egomotion. Data comes from any kind of sensor such as stereo vision systems, time of flight cameras or 3D lasers, providing a huge amount of unorganized 3D data. In this paper, we describe an efficient method to build complete 3D models from a Growing Neural Gas (GNG). The GNG is applied to the 3D raw data and it reduces both the subjacent error and the number of points, keeping the topology of the 3D data. The GNG output is then used in a 3D feature extraction method. We have performed a deep study in which we quantitatively show that the use of GNG improves the 3D feature extraction method. We also show that our method can be applied to any kind of 3D data. The 3D features obtained are used as input in an Iterative Closest Point (ICP)-like method to compute the 6DoF movement performed by a mobile robot. A comparison with standard ICP is performed, showing that the use of GNG improves the results. Final results of 3D mapping from the egomotion calculated are also shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-organising neural models have the ability to provide a good representation of the input space. In particular the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time-consuming, especially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This paper proposes a Graphics Processing Unit (GPU) parallel implementation of the GNG with Compute Unified Device Architecture (CUDA). In contrast to existing algorithms, the proposed GPU implementation allows the acceleration of the learning process keeping a good quality of representation. Comparative experiments using iterative, parallel and hybrid implementations are carried out to demonstrate the effectiveness of CUDA implementation. The results show that GNG learning with the proposed implementation achieves a speed-up of 6× compared with the single-threaded CPU implementation. GPU implementation has also been applied to a real application with time constraints: acceleration of 3D scene reconstruction for egomotion, in order to validate the proposal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paper submitted to the 39th International Symposium on Robotics ISR 2008, Seoul, South Korea, October 15-17, 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, the use of RGB-D sensors have focused a lot of research in computer vision and robotics. These kinds of sensors, like Kinect, allow to obtain 3D data together with color information. However, their working range is limited to less than 10 meters, making them useless in some robotics applications, like outdoor mapping. In these environments, 3D lasers, working in ranges of 20-80 meters, are better. But 3D lasers do not usually provide color information. A simple 2D camera can be used to provide color information to the point cloud, but a calibration process between camera and laser must be done. In this paper we present a portable calibration system to calibrate any traditional camera with a 3D laser in order to assign color information to the 3D points obtained. Thus, we can use laser precision and simultaneously make use of color information. Unlike other techniques that make use of a three-dimensional body of known dimensions in the calibration process, this system is highly portable because it makes use of small catadioptrics that can be placed in a simple manner in the environment. We use our calibration system in a 3D mapping system, including Simultaneous Location and Mapping (SLAM), in order to get a 3D colored map which can be used in different tasks. We show that an additional problem arises: 2D cameras information is different when lighting conditions change. So when we merge 3D point clouds from two different views, several points in a given neighborhood could have different color information. A new method for color fusion is presented, obtaining correct colored maps. The system will be tested by applying it to 3D reconstruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paper submitted to the 43rd International Symposium on Robotics (ISR2012), Taipei, Taiwan, Aug. 29-31, 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A parallel algorithm for image noise removal is proposed. The algorithm is based on peer group concept and uses a fuzzy metric. An optimization study on the use of the CUDA platform to remove impulsive noise using this algorithm is presented. Moreover, an implementation of the algorithm on multi-core platforms using OpenMP is presented. Performance is evaluated in terms of execution time and a comparison of the implementation parallelised in multi-core, GPUs and the combination of both is conducted. A performance analysis with large images is conducted in order to identify the amount of pixels to allocate in the CPU and GPU. The observed time shows that both devices must have work to do, leaving the most to the GPU. Results show that parallel implementations of denoising filters on GPUs and multi-cores are very advisable, and they open the door to use such algorithms for real-time processing.