Using GNG to improve 3D feature extraction—Application to 6DoF egomotion
Contribuinte(s) |
Universidad de Alicante. Instituto Universitario de Investigación Informática Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial Universidad de Alicante. Departamento de Tecnología Informática y Computación Robótica y Visión Tridimensional (RoViT) Informática Industrial y Redes de Computadores Lucentia |
---|---|
Data(s) |
27/11/2013
27/11/2013
01/08/2012
|
Resumo |
Several recent works deal with 3D data in mobile robotic problems, e.g. mapping or egomotion. Data comes from any kind of sensor such as stereo vision systems, time of flight cameras or 3D lasers, providing a huge amount of unorganized 3D data. In this paper, we describe an efficient method to build complete 3D models from a Growing Neural Gas (GNG). The GNG is applied to the 3D raw data and it reduces both the subjacent error and the number of points, keeping the topology of the 3D data. The GNG output is then used in a 3D feature extraction method. We have performed a deep study in which we quantitatively show that the use of GNG improves the 3D feature extraction method. We also show that our method can be applied to any kind of 3D data. The 3D features obtained are used as input in an Iterative Closest Point (ICP)-like method to compute the 6DoF movement performed by a mobile robot. A comparison with standard ICP is performed, showing that the use of GNG improves the results. Final results of 3D mapping from the egomotion calculated are also shown. This work has been partially supported by grant DPI2009-07144 from Ministerio de Ciencia e Innovacion of the Spanish Government and by the University of Alicante projects GRE09-16 and GRE10-35, and Valencia’s Government project GV/2011/034. |
Identificador |
Neural Networks. 2012, 32: 138-146. doi:10.1016/j.neunet.2012.02.014 0893-6080 (Print) 1879-2782 (Online) http://hdl.handle.net/10045/34177 10.1016/j.neunet.2012.02.014 |
Idioma(s) |
eng |
Publicador |
Elsevier |
Relação |
http://dx.doi.org/10.1016/j.neunet.2012.02.014 |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Palavras-Chave | #Egomotion #GNG #3D feature extraction #6DoF registration #Ciencia de la Computación e Inteligencia Artificial #Arquitectura y Tecnología de Computadores |
Tipo |
info:eu-repo/semantics/article |