942 resultados para Birge Sponer vibrational energy levels extrapolation
Resumo:
The electronic structures of quantum wires formed by lateral strain are studied in the framework of the effective-mass envelope-function method. The hole energy levels, wave functions, and optical transition matrix elements are calculated for the real quantum-wire structure, and the results are compared with experiment. It is found that one-dimensional confinement effects exist for both electronic and hole states related to the n (001) = 1 state. The lateral strained confinement causes luminescence-peak redshifts and polarization anisotropy, and the anisotropy is more noticeable than that in the unstrained case. The variation of hole energy levels with well widths in the [110] and [001] directions and wave vector along the [110BAR] direction are also obtained.
Resumo:
An effective-mass formulation for superlattices grown on (11N)-oriented substrates is given. It is found that, for GaAs/AlxGa1-xAs superlattices, the hole subband structure and related properties are sensitive to the orientation because of the large anisotropy of the valence band. The energy-level positions for the heavy hole and the optical transition matrix elements for the light hole apparently change with orientation. The heavy- and light-hole energy levels at k parallel-to = 0 can be calculated separately by taking the classical effective mass in the growth direction. Under a uniaxial stress along the growth direction, the energy levels of the heavy and light holes shift down and up, respectively; at a critical stress, the first heavy- and light-hole energy levels cross over. The energy shifts caused by the uniaxial stress are largest for the (111) case and smallest for the (001) case. The optical transition matrix elements change substantially after the crossover of the first heavy- and light-hole energy has occurred.
Resumo:
We report the physical behavior of Ru atom in silicon in this paper. Two energy levels E(0.58) and H(0.34) were observed. The pure substitutional Ru in silicon was responsible for the H(0.34), and the E(0.58) was introduced by a complex of a Ru atom and a vacancy (or vacancies). By use of scattered wave-X-alpha (SW-X-alpha) cluster method the theoretical calculation of electronic states for substitutional Ru atom in silicon has been performed. The results obtained were compared with those of experimental measurements.
Resumo:
Within the framework of the single-band effective-mass envelope-function theory, the effect of electric field on the electronic structures of pyramidal quantum dot is investigated. Taking the Coulomb interaction between the heavy holes and electron into account, the quantum confined Stark shift of the exciton as functions of the strength and direction of applied electric field and the size of the quantum dot are obtained. An interesting asymmetry of Stark shifts around the zero field is found. (C) 1997 Elsevier Science Ltd.
Resumo:
The electronic states and optical transition properties of three semiconductor wires Si? GaAs, and ZnSe are studied by the empirical pseudopotential homojunction model. The energy levels, wave functions, optical transition matrix elements, and lifetimes are obtained for wires of square cross section with width from 2 to 5 (root 2a/2), where a is the lattice constant. It is found that these three kinds of wires have different quantum confinement properties. For Si wires, the energy gap is pseudodirect, and the wave function of the electronic ground state consists mainly of four bulk Delta states. The optical transition matrix elements are much smaller than that of a direct transition, and increase with decreasing wire width. Where the width of wire is 7.7 Angstrom, the Si wire changes from an indirect energy gap to a direct energy gap due to mixing of the bulk Gamma(15) state. For GaAs wires. the energy gap is also pseudodirect in the width range considered, but the optical transition matrix elements are larger than those of Si wires by two orders of magnitude for the same width. However, there is no transfer to a direct energy gap as the wire width decreases. For ZnSe wires, the energy gap is always direct, and the optical transition matrix elements are comparable to those of the direct energy gap bulk semiconductors. They decrease with decreasing wire width due to mixing of the bulk Gamma(1) state with other states. All quantum confinement properties are discussed and explained by our theoretical model and the semiconductor energy band structures derived. The calculated lifetimes of the Si wire, and the positions of photoluminescence peaks, are in good agreement with experimental results.
Resumo:
Cd in GaAs is an acceptor atom and has the largest atomic diameter among the four commonly-used group-II shallow acceptor impurities (Be, Mg, Zn and Cd). The activation energy of Cd (34.7 meV) is also the largest one in the above four impurities, When Cd is doped by ion implantation, the effects of lattice distortion are expected to be apparently different from those samples ion-implanted by acceptor impurities with smaller atomic diameter. In order to compensate the lattice expansion and simultaneously to adjust the crystal stoichiometry, dual incorporation of Cd and nitrogen (N) was carried out into GaAs, Ion implantation of Cd was made at room temperature, using three energies (400 keV, 210 keV, 110 keV) to establish a flat distribution, The spatial profile of N atoms was adjusted so as to match that of Cd ones, The concentration of Cd and N atoms, [Cd] and [N] varied between 1 x 10(16) cm(-3) and 1 x 10(20) cm(-3). Two type of samples, i.e., solely Cd+ ion-implanted and dually (Cd+ + N+) ion-implanted with [Cd] = [N] were prepared, For characterization, Hall effects and photoluminescence (PL) measurements were performed at room temperature and 2 K, respectively. Hall effects measurements revealed that for dually ion-implanted samples, the highest activation efficiency was similar to 40% for [Cd] (= [N])= 1 x 10(18) cm(-3). PL measurements indicated that [g-g] and [g-g](i) (i = 2, 3, alpha, beta,...), the emissions due to the multiple energy levels of acceptor-acceptor pairs are significantly suppressed by the incorporation of N atoms, For [Cd] = [N] greater than or equal to 1 x 10(19) cm(-3), a moderately deep emission denoted by (Cd, N) is formed at around 1.45-1.41 eV. PL measurements using a Ge detector indicated that (Cd, N) is increasingly red-shifted in energy and its intensity is enhanced with increasing [Cd] = [N], (Cd, N) becomes a dominant emission for [Cd] = [N] = 1 x 10(20) cm(-3). The steep reduction of net hole carrier concentration observed for [Cd]/[N] less than or equal to 1 was ascribed to the formation of (Cd, N) which is presumed to be a novel radiative complex center between acceptor and isoelectronic atoms in GaAs.
Resumo:
In the framework of effective-mass envelope-function theory, the optical transitions of InAs/GaAs strained coupled quantum dots grown on GaAs (100) oriented substrates are studied. At the Gamma point, the electron and hole energy levels, the distribution of electron and hole wave functions along the growth and parallel directions, the optical transition-matrix elements, the exciton states, and absorption spectra are calculated. In calculations, the effects due to the different effective masses of electrons and holes in different materials are included. Our theoretical results are in good agreement with the available experimental data.
Resumo:
The electronic structures of quantum spheres and quantum wires are studied in the framework of the effective-mass theory. The spin-orbital coupling (SOC) effect is taken into account. On the basis of the zero SOC limit and strong SOC limit the hole quantum energy levels as functions of SOC parameter lambda are obtained. There is a fan region in which the ground and low-lying excited states approach those in the strong SOC limit as lambda increases. Besides, some theoretical results on the corrugated superlattices (CSL) are given.
Resumo:
Current-based microscopic defect analysis methods with optical filling techniques, namely current deep level transient spectroscopy (I-DLTS) and thermally stimulated current (TSC), have been used to study defect levels in a high resistivity silicon detector (p(+)-n-n(+)) induced by very high fluence neutron (VHFN) irradiation (1.7x10(15) n/cm(2)). As many as fourteen deep levels have been detected by I-DLTS. Arrhenius plots of the I-DLTS data have shown defects with energy levels ranging from 0.03 eV to 0.5 eV in the energy band gap. Defect concentrations of relatively shallow levels (E(t) < 0.33 eV) are in the order of 10(13)cm(-3), while those for relatively deep levels (E(t) > 0.33 eV) are in the order of 10(14) cm(-3). TSC data have shown similar defect spectra. A full depletion voltage of about 27,000 volts has been estimated by C-V measurements for the as-irradiated detector, which corresponds to an effective space charge density (N-eff) in the order of 2x10(14) cm(-3). Both detector leakage current and full depletion voltage have been observed to increase with elevated temperature annealing (ETA). The increase of the full depletion voltage corresponds to the increase of some deep levels, especially the 0.39 eV level. Results of positron annihilation spectroscopy have shown a decrease of total concentration of vacancy related defects including vacancy clusters with ETA, suggesting the breaking up of vacancy clusters as possible source of vacancies for the formation of single defects during the reverse anneal.
Resumo:
Using deep level transient spectroscopy (DLTS) the X conduction-subband energy levels in an AlAs well sandwiched by double GaAs layers were determined. Calculation gives eight subbands in the well with well width of 50 Angstrom. Among them, five levels and the other three remainders are determined by using the large longitudinal electron effective mass m(1)(1.1m(0)) and transverse electron effective mass m(t)(0.19m(0)) at X valley, respectively. Two subbands with the height energies were hardly detectable and the other six ones with lower energies are active in the present DLTS study. Because these six subbands are close to each other, we divided them into three groups. Experimentally, we observed three signals induced from the three groups. A good agreement between the calculation and experiment was obtained. (C) 1995 American Institute of Physics.
Resumo:
Er-doped silicon-rich silicon nitride (SRN) films were deposited on silicon substrate by an RF magnetron reaction sputtering system. After high temperature annealing, the films show intense photoluminescence in both the visible and infrared regions. Besides broad-band luminescence centered at 780 nm which originates from silicon nanocrystals, resolved peaks due to transitions from all high energy levels up to ~2H_(11/2) to the ground state of Er~(3+) are observed. Raman spectra and HRTEM measurements have been performed to investigate the structure of the films, and possible excitation processes are discussed.
Resumo:
Semi-insulating (SI) InP materials have been prepared under different stoichiometric conditions, including Fe-doping in indium-rich melt and high temperature annealing undoped wafer in phosphorus and iron phosphide ambients. Deep level defects related with non-stoichiometry have been detected in the SI-InP samples. A close relationship between the material quality of electrical property and native deep defects has been revealed by a comprehensive study of defects in as-grown Fe-doped and annealed undoped SI-InP materials. Fe-doped SI-InP material with low carrier mobility and poor thermal stability contains a high concentration of deep defects with energy levels in the range of 0.1-0.4eV. The suppression of the defects by high temperature annealing undoped InP leads to the manufacture of high quality SI-InP with high mobility and good electrical uniformity. A technology for the growth of high quality SI-InP through stoichiometry control has been proposed based on the results.
Resumo:
Confirmation of quantum dot lasing have been given by photoluminescence and electro-luminescence spectra. Energy levels of QD laser are distinctively resolved due to band filling effect, and the lasing energy of quantum dot laser is much lower than quantum well laser. The energy barrier at InAs/GaAs interface due to the built-in strain in self-organized system has been determined experimentally by deep level transient spectroscopy (DLTS). Such barrier has been predicted by previous theories and can be explained by the apexes appeared in the interface between InAs and GaAs caused by strain.
Resumo:
The single delta -doped InGaAs/AlGaAs pseudomorphic HEMT structure materials were grown by molecular beam epitaxy. The photoluminescence spectra of the materials were studied. There are two peaks in the photoluminescence spectra of the materials, corresponding to two sub energy levels of InGaAs quantum well. The ratio of the two peak's intensity was used as criterion to optimize the layer structures of the materials. The material with optimized layer ;tructures exhibits the 77 It mobility and two-dimensional electron gas density of 16 500 cm(2)/Vs and 2.58 x 10(12) cm(-2) respectively, and the 300 K mobility and two-dimensional electron gas density of 6800 cm(2)/Vs and 2.55 x 10(12) cm(-2) respectively. The pseudomorphic HEMT devices with gate length of 0.2 mum were fabricated using this material. The maximum transconductance of 650 mS/mm and the cut-off frequency of 81 GHz were achieved. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Deep-level transient spectroscopy and photoluminescence studies have been carried out on structures containing self-assembled InAs quantum dots formed in GaAs matrices. The use of n- and p-type GaAs matrices allows us to study separately electron and hole levels in the quantum dots by the deep-level transient spectroscopy technique. From analysis of deep-level transient spectroscopy measurements it follows that the quantum dots have electron levels 130 meV below the bottom of the GaAs conduction band and heavy-hole levels at 90 meV above the top of the GaAs valence band. Combining with the photoluminescence results, the band structures of InAs and GaAs have been determined. (C) 2000 Elsevier Science B.V. All rights reserved.