990 resultados para magnetic anisotropy
Resumo:
The problem of MHD natural convection boundary layer flow of an electrically conducting and optically dense gray viscous fluid along a heated vertical plate is analyzed in the presence of strong cross magnetic field with radiative heat transfer. In the analysis radiative heat flux is considered by adopting optically thick radiation limit. Attempt is made to obtain the solutions valid for liquid metals by taking Pr≪1. Boundary layer equations are transformed in to a convenient dimensionless form by using stream function formulation (SFF) and primitive variable formulation (PVF). Non-similar equations obtained from SFF are then simulated by implicit finite difference (Keller-box) method whereas parabolic partial differential equations obtained from PVF are integrated numerically by hiring direct finite difference method over the entire range of local Hartmann parameter, $xi$ . Further, asymptotic solutions are also obtained for large and small values of local Hartmann parameter $xi$ . A favorable agreement is found between the results for small, large and all values of $xi$ . Numerical results are also demonstrated graphically by showing the effect of various physical parameters on shear stress, rate of heat transfer, velocity and temperature.
Resumo:
The unsteady boundary-layer development for thermomagnetic convection of paramagnetic fluids inside a square cavity has been considered in this study. The cavity is placed in a microgravity condition (no gravitation acceleration) and under a uniform magnetic field which acts vertically. A ramp temperature boundary condition is applied on left vertical side wall of the cavity where the temperature initially increases with time up to some specific time and maintain constant thereafter. A distinct magnetic convection boundary layer is developed adjacent to the left vertical wall due to the effect of the magnetic body force generated on the paramagnetic fluid. An improved scaling analysis has been performed using triple-layer integral method and verified by numerical simulations. The Prandtl number has been chosen greater than unity varied over 5-100. Moreover, the effect of various values of the magnetic parameter and magnetic Rayleigh number on the fluid flow and heat transfer has been shown.
Resumo:
In order to obtain a more compact Superconducting Fault Current limiter (SFCL), a special geometry of core and AC coil is required. This results in a unique magnetic flux pattern which differs from those associated with conventional round core arrangements. In this paper the magnetic flux density within a Fault Current Limiter (FCL) is described. Both experimental and analytical approaches are considered. A small scale prototype of an FCL was constructed in order to conduct the experiments. This prototype comprises a single phase. The analysis covers both the steady state and the short-circuit condition. Simulation results were obtained using commercial software based on the Finite Element Method (FEM). The magnetic flux saturating the cores, leakage magnetic flux giving rise to electromagnetic forces and leakage magnetic flux flowing in the enclosing tank are computed.
Resumo:
Background: Hyperpolarised helium MRI (He3 MRI) is a new technique that enables imaging of the air distribution within the lungs. This allows accurate determination of the ventilation distribution in vivo. The technique has the disadvantages of requiring an expensive helium isotope, complex apparatus and moving the patient to a compatible MRI scanner. Electrical impedance tomography (EIT) a non-invasive bedside technique that allows constant monitoring of lung impedance, which is dependent on changes in air space capacity in the lung. We have used He3MRI measurements of ventilation distribution as the gold standard for assessment of EIT. Methods: Seven rats were ventilated in supine, prone, left and right lateral position with 70% helium/30% oxygen for EIT measurements and pure helium for He3 MRI. The same ventilator and settings were used for both measurements. Image dimensions, geometric centre and global in homogeneity index were calculated. Results: EIT images were smaller and of lower resolution and contained less anatomical detail than those from He3 MRI. However, both methods could measure positional induced changes in lung ventilation, as assessed by the geometric centre. The global in homogeneity index were comparable between the techniques. Conclusion: EIT is a suitable technique for monitoring ventilation distribution and inhomgeneity as assessed by comparison with He3 MRI.
Resumo:
The optimum parameters for synthesis of zeolite NaA based on metakaolin were investigated according to results of cation exchange capacity and static water adsorption of all synthesis products and selected X-ray diffraction (XRD). Magnetic zeolite NaA was synthesized by adding Fe3O4 in the precursor of zeolite. Zeolite NaA and magnetic zeolite NaA were characterized with scanning electron microscopy (SEM) and XRD. Magnetic zeolite NaA with different Fe3O4 loadings was prepared and used for removal of heavy metals (Cu2+, Pb2+). The results show the optimum parameters for synthesis zeolite NaA are SiO2/Al2O3 = 2.3, Na2O/SiO2 = 1.4, H2O/Na2O = 50, crystallization time 8 h, crystallization temperature 95 �C. The addition of Fe3O4 makes the NaA zeolite with good magnetic susceptibility and good magnetic stability regardless of the Fe3O4 loading, confirming the considerable separation efficiency. Additionally, Fe3O4 loading had a little effect on removal of heavy metal by magnetic zeolite, however, the adsorption capacity still reaches 2.3 mmol g�1 for Cu2+, Pb2+ with a removal efficiency of over 95% in spite of 4.7% Fe3O4 loading. This indicates magnetic zeolite can be used to remove metal heavy at least Cu2+, Pb2+ from water with metallic contaminants and can be separated easily after a magnetic process.
Resumo:
Triangle-shaped nanohole, nanodot, and lattice antidot structures in hexagonal boron-nitride (h-BN) monolayer sheets are characterized with density functional theory calculations utilizing the local spin density approximation. We find that such structures may exhibit very large magnetic moments and associated spin splitting. N-terminated nanodots and antidots show strong spin anisotropy around the Fermi level, that is, half-metallicity. While B-terminated nanodots are shown to lack magnetism due to edge reconstruction, B-terminated nanoholes can retain magnetic character due to the enhanced structural stability of the surrounding two-dimensional matrix. In spite of significant lattice contraction due to the presence of multiple holes, antidot super lattices are predicted to be stable, exhibiting amplified magnetism as well as greatly enhanced half-metallicity. Collectively, the results indicate new opportunities for designing h-BNbased nanoscale devices with potential applications in the areas of spintronics, light emission, and photocatalysis.
Resumo:
Field-effect transistors (FETs) fabricated from undoped and Co2+-doped CdSe colloidal nanowires show typical n-channel transistor behaviour with gate effect. Exposed to microscope light, a 10 times current enhancement is observed in the doped nanowire-based devices due to the significant modification of the electronic structure of CdSe nanowires induced by Co2+-doping, which is revealed by theoretical calculations from spin-polarized plane-wave density functional theory.
Resumo:
We used Magnetic Resonance microimaging (μMRI) to study the compressive behaviour of synthetic elastin. Compression-induced changes in the elastin sample were quantified using longitudinal and transverse spin relaxation rates (R1 and R2, respectively). Spatially-resolved maps of each spin relaxation rate were obtained, allowing the heterogeneous texture of the sample to be observed with and without compression. Compression resulted in an increase of both the mean R1 and the mean R2, but most of this increase was due to sub-locations that exhibited relatively low R1 and R2 in the uncompressed state. This behaviour can be described by differential compression, where local domains in the hydrogel with a relatively low biopolymer content compress more than those with a relatively high biopolymer content.
Resumo:
This paper assesses the capacity to provide semipermeability of the synthetic layer of surface-active phospholipids created to replace the depleted surface amorphous layer of articular cartilage. The surfaces of articular cartilage specimens in normal, delipidized, and relipidized conditions following incubation in dipalmitoyl-phosphatidylcholine and palmitoyl-oleoyl-phosphatidylcholine components of the joint lipid mixture were characterized nanoscopically with the atomic force microscope and also imaged as deuterium oxide (D2O) diffused transiently through these surfaces in a magnetic resonance imaging enclosure. The MR images were then used to determine the apparent diffusion coefficients in a purpose-built MATLAB®-based algorithm. Our results revealed that all surfaces were permeable to D2O, but that there was a significant difference in the semipermeability of the surfaces under the different conditions, relative to the apparent diffusion coefficients. Based on the results and observations, it can be concluded that the synthetic lipid that is deposited to replace the depleted SAL of articular cartilage is capable of inducing some level of semipermeability.
Resumo:
Monte Carlo simulations were used to investigate the relationship between the morphological characteristics and the diffusion tensor (DT) of partially aligned networks of cylindrical fibres. The orientation distributions of the fibres in each network were approximately uniform within a cone of a given semi-angle (θ0). This semi-angle was used to control the degree of alignment of the fibres. The networks studied ranged from perfectly aligned (θ0 = 0) to completely disordered (θ0 = 90°). Our results are qualitatively consistent with previous numerical models in the overall behaviour of the DT. However, we report a non-linear relationship between the fractional anisotropy (FA) of the DT and collagen volume fraction, which is different to the findings from previous work. We discuss our results in the context of diffusion tensor imaging of articular cartilage. We also demonstrate how appropriate diffusion models have the potential to enable quantitative interpretation of the experimentally measured diffusion-tensor FA in terms of collagen fibre alignment distributions.
Resumo:
We present a mini-review of the development and contemporary applications of diffusion-sensitive nuclear magnetic resonance (NMR) techniques in biomedical sciences. Molecular diffusion is a fundamental physical phenomenon present in all biological systems. Due to the connection between experimentally measured diffusion metrics and the microscopic environment sensed by the diffusing molecules, diffusion measurements can be used for characterisation of molecular size, molecular binding and association, and the morphology of biological tissues. The emergence of magnetic resonance was instrumental to the development of biomedical applications of diffusion. We discuss the fundamental physical principles of diffusion NMR spectroscopy and diffusion MR imaging. The emphasis is placed on conceptual understanding, historical evolution and practical applications rather than complex technical details. Mathematical description of diffusion is presented to the extent that it is required for the basic understanding of the concepts. We present a wide range of spectroscopic and imaging applications of diffusion magnetic resonance, including colloidal drug delivery vehicles; protein association; characterisation of cell morphology; neural fibre tractography; cardiac imaging; and the imaging of load-bearing connective tissues. This paper is intended as an accessible introduction into the exciting and growing field of diffusion magnetic resonance.
Resumo:
Purpose: PTK787/ZK 222584 (PTK/ZK), an orally active inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinases, inhibits VEGF-mediated angiogenesis. The pharmacodynamic effects of PTK/ZK were evaluated by assessing changes in contrast-enhancement parameters of metastatic liver lesions using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in patients with advanced colorectal cancer treated in two ongoing, dose-escalating phase I studies. Patients and Methods: Twenty-six patients had DCE-MRI performed at baseline, day 2, and at the end of each 28-day cycle. Doses of oral PTK/ZK ranged from 50 to 2000 mg once daily. Tumor permeability and vascularity were assessed by calculating the bidirectional transfer constant (Ki). The percentage of baseline Ki (% of baseline Ki) at each time point was compared with pharmacokinetic and clinical end points. Results: A significant negative correlation exists between the % of baseline Ki and increase in PTK/ZK oral dose and plasma levels (P = .01 for oral dose; P = .0001 for area under the plasma concentration curve at day 2). Patients with a best response of stable disease had a significantly greater reduction in Ki at both day 2 and at the end of cycle 1 compared with progressors (mean difference in % of baseline Ki, 47%, P = .004%; and 51%, P = .006; respectively). The difference in % of baseline Ki remained statistically significant after adjusting for baseline WHO performance status. Conclusion: These findings should help to define a biologically active dose of PTK/ZK. These results suggest that DCE-MRI may be a useful biomarker for defining the pharmacological response and dose of angiogenesis inhibitiors, such as PTK/ZK, for further clinical development. © 2003 by American Society of Clinical Oncology.
Resumo:
Total Artificial Hearts are mechanical pumps which can be used to replace the failing natural heart. This novel study developed a means of controlling a new design of pump to reproduce physiological flow bringing closer the realisation of a practical artificial heart. Using a mathematical model of the device, an optimisation algorithm was used to determine the best configuration for the magnetic levitation system of the pump. The prototype device was constructed and tested in a mock circulation loop. A physiological controller was designed to replicate the Frank-Starling like balancing behaviour of the natural heart. The device and controller provided sufficient support for a human patient while also demonstrating good response to various physiological conditions and events. This novel work brings the design of a practical artificial heart closer to realisation.
Resumo:
Zinc oxide (ZnO) that contains non-magnetic ionic dopants, such as nitrogen (N)-doped zinc oxide (ZnO:N), has been observed to exhibit ferromagnetism. Ferromagnetism is proposed to arise from the Coulomb excitation in the localized states that is induced by the oxygen vacancy, V O. A model based on the Coulomb excitation that is associated with the electron–phonon interaction theoretically explains the ferromagnetic mechanism of ZnO:N. This study reveals that the ferromagnetism will be induced by either deep localized states with a small V O concentration or shallow localized states with a high V O concentration. Additionally, electron–phonon coupling either suppresses the ferromagnetism that is induced by the deep donor states of V O or enhances the ferromagnetism that is induced by the shallow donor states of V O.