901 resultados para Theoretical development of Triple P
Resumo:
Background: There is an increasing recognition that modelling and simulation can assist in the process of designing health care policies, strategies and operations. However, the current use is limited and answers to questions such as what methods to use and when remain somewhat underdeveloped. Aim. The aim of this study is to provide a mechanism for decision makers in health services planning and management to compare a broad range of modelling and simulation methods so that they can better select and use them or better commission relevant modelling and simulation work. Methods. This paper proposes a modelling and simulation method comparison and selection tool developed from a comprehensive literature review, the research team's extensive expertise and inputs from potential users. Twenty-eight different methods were identified, characterised by their relevance to different application areas, project life cycle stages, types of output and levels of insight, and four input resources required (time, money, knowledge and data). Results: The characterisation is presented in matrix forms to allow quick comparison and selection. This paper also highlights significant knowledge gaps in the existing literature when assessing the applicability of particular approaches to health services management, where modelling and simulation skills are scarce let alone money and time. Conclusions: A modelling and simulation method comparison and selection tool is developed to assist with the selection of methods appropriate to supporting specific decision making processes. In particular it addresses the issue of which method is most appropriate to which specific health services management problem, what the user might expect to be obtained from the method, and what is required to use the method. In summary, we believe the tool adds value to the scarce existing literature on methods comparison and selection. © 2011 Jun et al.
Resumo:
Porous structures are used in orthopaedics to promote biological fixation between metal implant and host bone. In order to achieve rapid and high volumes of bone ingrowth the structures must be manufactured from a biocompatible material and possess high interconnected porosities, pore sizes between 100 and 700 microm and mechanical strengths that withstand the anticipated biomechanical loads. The challenge is to develop a manufacturing process that can cost effectively produce structures that meet these requirements. The research presented in this paper describes the development of a 'beam overlap' technique for manufacturing porous structures in commercially pure titanium using the Selective Laser Melting (SLM) rapid manufacturing technique. A candidate bone ingrowth structure (71% porosity, 440 microm mean pore diameter and 70 MPa compression strength) was produced and used to manufacture a final shape orthopaedic component. These results suggest that SLM beam overlap is a promising technique for manufacturing final shape functional bone ingrowth materials.
Resumo:
Investigating the development of Eustrongylides ignotus in its definitive host would enable us to trace the complete life cycle of this nematode. Fourth-stage larvae isolated from naturally infected swamp eels (Monopterus albus) were used to infect domestic ducks (Anas platyrhynchos domestica [L.]). We observed that male and female worms exhibited different developmental patterns in host ducks. In males, the fourth molt occurred at day 1-2 post-infection (PI), after which they attained maturity on day 4 PI and died between day 7 and 9 PI. However, females underwent the fourth molt at day 2-4 PI, produced eggs from day 9 to 17 PI, and then degenerated and died. When compared 10 fourth-stage Female larvae, adult females demonstrated a considerable increase in total body size with a 151% increase in average body width and a 17% increase in average body length. However. the increase in size of the male larvae was not its significant as that in females. The average body width in adult males exhibited only a 45% increase over that in the larval stage.
Resumo:
The behaviour of cast-iron tunnel segments used in London Underground tunnels was investigated using the 3-D finite element (FE) method. A numerical model of the structural details of cast-iron segmental joints such as bolts, panel and flanges was developed and its performance was validated against a set of full-scale tests. Using the verified model, the influence of structural features such as caulking groove and bolt pretension was examined for both rotational and shear loading conditions. Since such detailed modelling of bolts increases the computational time when a full scale segmental tunnel is analysed, it is proposed to replace the bolt model to a set of spring models. The parameters for the bolt-spring models, which consider the geometry and material properties of the bolt, are proposed. The performance of the combined bolt-spring and solid segmental models are evaluated against a more conventional shell-spring model. © 2014 Elsevier Ltd.
Resumo:
Biodegradable polymers can be applied to a variety of implants for controlled and local drug delivery. The aim of this study is to develop a biodegradable and nanoporous polymeric platform for a wide spectrum of drug-eluting implants with special focus on stent-coating applications. It was synthesized by poly(DL-lactide-co-glycolide) (PLGA 65:35, PLGA 75:25) and polycaprolactone (PCL) in a multilayer configuration by means of a spin-coating technique. The antiplatelet drug dipyridamole was loaded into the surface nanopores of the platform. Surface characterization was made by atomic force microscopy (AFM) and spectroscopic ellipsometry (SE). Platelet adhesion and drug-release kinetic studies were then carried out. The study revealed that the multilayer films are highly nanoporous, whereas the single layers of PLGA are atomically smooth and spherulites are formed in PCL. Their nanoporosity (pore diameter, depth, density, surface roughness) can be tailored by tuning the growth parameters (eg, spinning speed, polymer concentration), essential for drug-delivery performance. The origin of pore formation may be attributed to the phase separation of polymer blends via the spinodal decomposition mechanism. SE studies revealed the structural characteristics, film thickness, and optical properties even of the single layers in the triple-layer construct, providing substantial information for drug loading and complement AFM findings. Platelet adhesion studies showed that the dipyridamole-loaded coatings inhibit platelet aggregation that is a prerequisite for clotting. Finally, the films exhibited sustained release profiles of dipyridamole over 70 days. These results indicate that the current multilayer phase therapeutic approach constitutes an effective drug-delivery platform for drug-eluting implants and especially for cardiovascular stent applications.
Resumo:
Anadromous Coilia ectenes was sampled from the Yangtze estuary at Chongming and two of the primary upstream spawning grounds at Jingjiang and Anqing in April, May, June and August 2006. Gonad development was analyzed for females. In April, fish were collected in the estuary and at Jingjiang, but not at Anqing. No female was mature (gonad at stages IV or V) at either location. In May, 45% of the females were mature in the estuary, 9% at Jingjiang and 5% at Anqing. In June, 86% were mature in the estuary, 83% at Jingjiang and 7% at Anqing. In August, C. ectenes was absent at Jingjiang. No female was mature in the estuary, and all females were mature at Anqing. Absolute fecundity (AF) increased significantly with standard length (SL) by a power function AF = 2.27 x 10(-6) x SL2.67 (r(2) = 0.57, n = 48, P < 0.05). Mature females in the estuary were smaller than those at Jingjiang and Anqing. Conservation of spawners in the upstream spawning grounds is important because they have a size-related fecundity advantage over the smaller spawners in the estuary.
Resumo:
A monolithic design is proposed for low-noise sub-THz signal generation by integrating a reflector onto a dual laser source. The reflectivity and the position of such a reflector can be adjusted to obtain constructive feedback from the reflector to both lasers, thus causing a Vernier feedback effect. As a result, 10-fold line narrowing, the narrowing being limited by the resolution of the simulation, is predicted using a transmission line model. Finally, a simple control scheme using an electrical feedback loop to adjust laser biases is proposed to maintain the line narrowing performance. This line narrowing technique, comprising a passive integrated reflector, could allow the development of a low-cost, compact and energy-efficient solution for high-purity sub-THz signal generation. © The Institution of Engineering and Technology 2014.
Resumo:
The objective of this study was to develop type I markers for genome mapping and other genetic studies of Penaeus monodon. Primers were designed based on expressed sequence tags (ESTs) from a P monodon cephalothorax cDNA library to amplify 100-300 bp products. 34 of the primer pairs successfully amplified PCR products from genomic DNA. Single-strand conformation polymorphism analysis showed that similar to 30% of the ESTs tested exhibit polymorphism in a test panel of P monodon individuals. Mendelian inheritance of the EST-derived markers has been established in two international reference mapping families of P monodon, and mapping of these markers is in progress. Some ESTs were successfully amplified from other Penaeus species (P. chinensis, P japonicus and P vannamei), indicating that the markers are applicable in cross-species comparison. Two populations of P. japonicus could be differentiated using one of the ESTS. In conclusion, the polymorphic EST markers developed in this study are applicable in genome mapping and population genetic studies of penaeid shrimp. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
During the twentieth century evidence was presented which suggested the presence of various strains and races of the parasite Ichthyophthirius multifiliis Fouquet. However, ecological profiles of various parasite isolates from different climatic zones are sparse. Such stringent characterizations of parasite development at defined abiotic conditions could provide valuable criteria for the different races: profile comparison from various localities is one way to differentiate these strains. Baseline investigations were therefore performed on the associations between abiotic factors (temperature/salinity) and the development of theronts in tomocysts of I. multifiliis isolated from rainbow trout in a Danish trout farm. It was shown that tomocyst formation and theront development took place between 5 and 30degreesC. Development rates and sizes of theronts were clearly affected by temperature: theronts escaped tomocysts already after 16-27 h at 25degreesC and 30degreesC, whereas this process took 8-9 days at 5degreesC. Likewise, theront size decreased steadily from a maximum of 57.4 x 28.6 mum at 5degreesC to 28.6 x 20.0 mum at 30degreesC. This size variation was only partly associated with the number of theronts that appeared at different temperatures. The lowest number of theronts escaping from one tomocyst was indeed found at 5-7degreesC (mean 329-413). At 11.6, 17.0 and 21degreesC. the highest number of theronts appeared (mean 546-642). However, at 25 and 30degreesC, the number decreased (458 and 424, respectively). Additional studies on the salinity dependent development of the parasite (at 11.6degreesC) showed that salinities above 5 p.p.t. totally inhibited development. Even at 5 p.p.t. the developmental time significantly increased and the number of theronts produced from one tomocyst decreased.
Resumo:
This paper reports the development of solar-blind aluminum gallium nitride (AlGaN) 128x128 UV Focal Plane Arrays (FPAs). The back-illuminated hybrid FPA architecture consists of an 128x128 back-illuminated AlGaN PIN detector array that is bump-mounted to a matching 128x128 silicon CMOS readout integrated circuit (ROIC) chip. The 128x128 p-i-n photodiode arrays with cuton and cutoff wavelengths of 233 and 258 nm, with a sharp reduction in response to UVB (280-320 nm) light. Several examples of solar-blind images are provided. This solar-blind band FPA has much better application prospect.
Resumo:
InGaN p-i-n homojunction structures were grown by metal-organic chemical vapor deposition, and solar cells with different p-contact schemes were fabricated. X-ray diffraction measurements demonstrated that the epitaxial layers have a high crystalline quality. Solar cells with semitransparent p-contact exhibited a fill factor (FF) of 69.4%, an open-circuit voltage (V-oc) of 2.24 V and an external quantum efficiency (EQE) of 41.0%. On the other hand, devices with grid p-contact showed the corresponding values of 57.6%, 2.36 V, 47.9% and a higher power density. These results indicate that significant photo-responses can be achieved in InGaN p-i-n solar cells.
Resumo:
We investigate the development of cross-hatch grid surface morphology in growing mismatched layers and its effect on ordering growth of quantum dots (QDs). For a 60degrees dislocation (MD), the effective part in strain relaxation is the part with the Burgers vector parallel to the film/substrate interface within its b(edge) component; so the surface stress over a MD is asymmetric. When the strained layer is relatively thin, the surface morphology is cross-hatch grid with asymmetric ridges and valleys. When the strained layer is relatively thick, the ridges become nearly symmetrical, and the dislocations and the ridges inclined-aligned. In the following growth of InAs, QDs prefer to nucleate on top of the ridges. By selecting ultra-thin In0.15Ga0.85As layer (50nm) and controlling the QDs layer at just formed QDs, we obtained ordered InAs QDs. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Morphology of Gallium Nitride (GaN) in initial growth stage was observed with atomic force microscopy (AFM) and scanning electron microscopy (SEM), It was found that the epilayer developed from islands to coalesced film. Statistics based on AFM observation was carried out to investigate the morphology characteristics. It was found that the evolution of height distribution could be used to describe morphology development. Statistics also clearly revealed variation of top-face growth rate among islands. Indium-doping effect on morphology development was also statistically studied. The roughening and smoothing behavior in morphology development was explained. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Quantum dot gain spectra based on harmonic oscillator model are calculated including and excluding excitons. The effects of non-equilibrium distributions are considered at low temperatures. The variations of threshold current density in a wide temperature range are analyzed and the negative characteristic temperature and oscillatory characteristic temperature appearing in that temperature range are discussed. Also,the improvement of quantum dot lasers' performance is investigated through vertical stacking and p-type doping and the optimal dot density, which corresponds to minimal threshold current density,is calculated.
Resumo:
The 4d photoabsorption spectra of I2+, I3+, and I4+ have been obtained in the 70-127 eV region with the dual laser-produced plasma technique at time delays ranging from 400 to 520 ns. With decreasing time delay, the dominant contribution to the spectra evolves from the I2+ to the I4+ ions, and each spectrum contains discrete 4d-nf transitions and a broad 4d-epsilon f shape resonance, which are identified with the aid of multiconfiguration Hartree-Fock calculations. The excited states decay by direct autoionization involving 5s or 5p electrons, and rates for the different processes and resulting linewidths were calculated. With increasing ionization, the 4d-epsilon f shape resonance become intense and broader in going from I2+ to I3+, and then vanishes at I5+. In addition, the discrete structure of the calculated spectrum of each ion gradually approaches the corresponding shape resonance position. Based on the assumption of a normalized Boltzmann distribution among the excited states and a steady-state collisional-radiative model, we reproduced spectra which are in good agreement with experiment.