964 resultados para Taijitu curve di Bézier arte matematica religione


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nella tesi viene studiata tramite un certo numero di esempi la corrispondenza di Galois per polinomi di terzo e quarto grado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La classificazione delle algebre di Lie semplici di dimensione finita su un campo algebricamente chiuso si divide in due parti: le algebre di Lie classiche e quelle eccezionali. La differenza principale è che le algebre di Lie classiche vengono introdotte come algebre di matrici, quelle eccezionali invece non si presentano come algebre di matrici ma un modo di introdurle è attraverso il loro diagramma di Dynkin. Lo scopo della tesi è di realizzare l' algebra di Lie eccezionale di tipo G_2 come algebra di matrici. Per raggiungere tale scopo viene introdotta un' algebra di composizione: la cosiddetta algebra degli ottonioni. Quest'ultima viene costruita in due modi diversi: come spazio vettoriale sui reali con un prodotto bilineare e come insieme delle coppie ordinate di quaternioni. Il resto della tesi è dedicato all' algebra delle derivazioni degli ottonioni. Viene dimostrato che questa è un' algebra di Lie semisemplice di dimensione 14. Infine, considerando la complessificazione dell'algebra delle derivazioni degli ottonioni, viene dimostrato che quest'ultima è semplice e quindi isomorfa a G_2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questo elaborato realizzato assieme alla creazione di un link nel sito "progettomatematic@" tratta dell'infinito in tre modi diversi: la storia, l'applicazione ai frattali e alla crittografia. Inizia con una breve storia dai greci all'antinomia di Russel; poi si parla dei frattali in natura, di misura e dimensione di Hausdorff, polvere di Cantor e fiocco di neve di Koch. Infine si trova un riassunto dei cifrari storici famosi, con particolare attenzione al cifrario di Vernam, alla teoria dell'entropia di Shannon e alla dimostrazione che otp ha sicurezza assoluta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scopo della tesi è presentare alcuni aspetti della teoria spettrale per operatori compatti definiti su spazi di Hilbert separabili. Il primo capitolo è dedicato al Teorema di esistenza di una base numerabile di autovettori, per operatori compatti autoaggiunti. Nel secondo capitolo sono presentate alcune applicazioni dirette al Laplaciano. Viene dimostrato il teorema di immersione di Sobolev, e come conseguenza dell'immersione compatta, si prova che l'inverso del Laplaciano su aperti limitati è un operatore compatto autoaggiunto. Conseguentemente viene determinata la base dei suoi autovettori, che in dimensione uno è la classica serie di Fourier. Nel terzo capitolo vengono determinate le espressioni analitiche delle basi di autovettori sul quadrato e il cerchio unitario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa trattazione ci proponiamo di analizzare e approfondire alcune delle definizioni fondamentali di funzione convessa; l’ambiente nel quale lavoreremo non si limiterà a quello euclideo, ma spazierà anche tra gruppo di Heisenberg e gruppo di Carnot. In questo lavoro dimostriamo una nuova caratterizzazione delle funzioni convesse in termini delle proprietà di sottomedia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi si studiano alcune proprietà fondamentali delle funzioni Zeta e L associate ad una curva ellittica. In particolare, si dimostra la razionalità della funzione Zeta e l'ipotesi di Riemann per due famiglie specifiche di curve ellittiche. Si studia poi il problema dell'esistenza di un prolungamento analitico al piano complesso della funzione L di una curva ellittica con moltiplicazione complessa, attraverso l'analisi diretta di due casi particolari.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo lavoro si affronta il tema della rilevazione fotometrica di esopianeti in transito attraverso la tecnica della fotometria differenziale e l'impiego di piccoli telescopi commerciali. Dopo un'introduzione sull'attuale stato della popolazione di esopianeti, verranno analizzati i sistemi extrasolari transitanti, da cui è possibile ricavare grandezze orbitali e fisiche che nessun altro metodo, attualmente, è in grado di garantire. Nella seconda parte verranno affrontate le problematiche relative alla rilevazione fotometrica dei transiti, sviluppando una tecnica di acquisizione e riduzione dei dati semplice, veloce e che possa allo stesso tempo garantire la precisione richiesta, di almeno 0.002 magnitudini. Questa verrà messa alla prova su due esopianeti che soddisfano le richieste di precisione sviluppate nel testo. Verrà dimostrato che con uno strumento da 0.25 m e una camera CCD commerciale, da cieli affetti da moderato inquinamento luminoso, è possibile ottenere curve di luce con una precisione dell'ordine di 0.001 magnitudini per astri con magnitudini comprese tra 8 e 13, comparabili con le accuratezze di strumenti di taglia professionale. Tale precisione è sufficiente per rilevare pianeti gioviani caldi e persino pianeti terrestri in transito attorno a stelle di classe M e dare un aiuto importante alla ricerca di punta. Questo verrà dimostrato presentando la sessione fotometrica con cui è stato scoperto il transito dell'esopianeta HD17156 b, il primo rilevato da strumentazione amatoriale. Con tecniche di ripresa simultanea attraverso setup identici è possibile aumentare la precisione di un fattore √N, dove N è il numero di telescopi impiegati in una sessione fotometrica, supposti raggiungere la stessa precisione. Tre strumenti come quello utilizzato nelle sessioni presentate nel testo sono sufficienti per garantire un campionamento temporale di almeno 0.13 dati/minuto e una precisione di 0.0006 magnitudini, ovvero di 500 ppm, non molto distante dal limite di 200 ppm attualmente raggiunto dai più grandi telescopi terrestri.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi sono presentate la misura e la dimensione di Hausdorff, gli strumenti matematici che permettono di descrivere e analizzare alcune delle più importanti proprietà degli insiemi frattali. Inoltre viene introdotto il carattere di autosimilarità, comune a questi insiemi, e vengono mostrati alcuni tra i più noti esempi di frattali, come l'insieme di Cantor, la curva di Koch, l'insieme di Mandelbrot e gli insiemi di Julia. Di quest'ultimi sono presenti immagini ottenute tramite un codice Matlab.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo lavoro studiamo le funzioni armoniche e le loro proprietà: le formule di media, il principio del massimo e del minimo (forte e debole), la disuguaglianza di Harnack e il teorema di Louiville. Successivamente scriviamo la prima e la seconda identità di Green, che permettono di ottenere esplicitamente la soluzione fondamentale dell’equazione di Laplace, tramite il calcolo delle soluzioni radiali del Laplaciano. Introduciamo poi la funzione di Green, da cui si ottiene una formula di rappresentazione per le funzioni armoniche. Se il dominio di riferimento è una palla, la funzione di Green può essere determinata esplicitamente, e ciò conduce alla rappresentazione integrale di Poisson per le funzioni armoniche in una palla.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primi elementi della teoria dei semigruppi di operatori lineari e applicazione del metodo dei semigruppi alle equazioni differenziali alle derivate parziali di tipo parabolico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi approfondisce alcuni argomenti di teoria dei gruppi e fornisce alcuni esempi nella classificazione dei gruppi finiti di ordine dato.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nella tesi si arriva a classificare le varietà di Seifert, particolari 3-varietà che ammettono una fibrazione in cerchi. Dopo un'introduzione sulla topologia delle varietà e sulla classificazione delle superfici, vengono presentate le 3-varietà e la decomposizione in fattori primi. Con l'esposizione della decomposizione JSJ vengono introdotte le varietà di Seifert. Infine vengono classificati i fibrati di Seifert, tramite la superficie di base e le pendenze delle fibre singolari.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intuitivamente una superficie S è rigata se è un'unione di rette o, equivalentemente, se per ogni punto di essa passa una retta che giace interamente sulla superficie. La superficie si dice doppiamente rigata se per ogni suo punto passano due rette della superficie. Gli esempi più comuni e facili da visualizzare sono i piani, i coni e i cilindri. Scopo di questo elaborato è lo studio delle superfici rigate dello spazio affine reale tridimensionale e delle loro proprietà geometriche locali e globali, con particolare attenzione allo studio delle superfici sviluppabili e delle quadriche rigate. Si considereranno poi le rigate nello spazio proiettivo tridimensionale complesso per arrivare ad un risultato classico sulle superfici algebriche rigate luogo delle rette che si appoggiano a tre curve dello spazio. Nonostante le rigate siano tra le superfici più semplici, il loro studio può essere effettuato da diversi punti di vista: quello della geometria analitica elementare, della geometria differenziale e della geometria proiettiva. La proprietà di una superficie di essere rigata o doppiamente rigata si conserva per trasformazioni affini e per trasformazioni proiettive, e questo le ha rese largamente utilizzate in architettura, come mostra l’ampia letteratura al riguardo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gli spazi di Teichmuller nacquero come risposta ad un problema posto diversi anni prima da Bernhard Riemann, che si domandò in che modo poter parametrizzare le strutture complesse supportate da una superficie fissata; in questo lavoro di tesi ci proponiamo di studiarli in maniera approfondita. Una superficie connessa, orientata e dotata di struttura complessa, prende il nome di superficie di Riemann e costituisce l’oggetto principe su cui si basa l’intero studio affrontato nelle pagine a seguire. Il teorema di uniformizzazione per le superfici di Riemann permette di fare prima distinzione netta tra esse, classificandole in superfici ellittiche, piatte o iperboliche. Due superfici di Riemann R ed S si dicono equivalenti se esiste un biolomorfismo f da R in S, e si dice che hanno la stessa struttura complessa. Certamente se le due superfici hanno genere diverso non possono essere equivalenti. Tuttavia, se R ed S sono superfci con lo stesso genere g ma non equivalenti, è comunque possibile dotare R di una struttura complessa, diversa dalla precedente, che la renda equivalente ad S. Questo permette di osservare che R è in grado di supportare diverse strutture complesse non equivalenti tra loro. Lo spazio di Teichmuller Tg di R è definito come lo spazio che parametrizza tutte le strutture complesse su R a meno di biolomorfismo. D’altra parte ogni superficie connessa, compatta e orientata di genere maggiore o uguale a 2 è in grado di supportare una struttura iperbolica. Il collegamento tra il mondo delle superfici di Riemann con quello delle superfici iperboliche è stato dato da Gauss, il quale provò che per ogni fissata superficie R le metriche iperboliche sono in corrispondenza biunivoca con le strutture complesse supportate da R stessa. Questo teorema permette di fornire una versione della definizione di Tg per superfici iperboliche; precisamente due metriche h1, h2 su R sono equivalenti se e soltanto se esiste un’isometria φ : (R, h1 ) −→ (R, h2 ) isotopa all’identità. Pertanto, grazie al risultato di Gauss, gli spazi di Teichmuller possono essere studiati sia dal punto di vista complesso, che da quello iperbolico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scopo di questa tesi è presentare i concetti topologici legati alla nozione di gruppo di omotopia, con particolare riferimento ai gruppi di omotopia delle sfere. Il capitolo introduttivo riguarda il gruppo fondamentale e il secondo capitolo la sua generalizzazione ai gruppi di omotopia di ordine superiore. Nel terzo capitolo è trattato il cobordismo con framing tra sottovarietà e la sua relazione con la teoria dell'omotopia. Negli ultimi due capitoli sono enunciati teoremi e risultati ottenuti nel problema ancora irrisolto del calcolo dei gruppi di omotopia delle sfere.