911 resultados para Rutile TiO2
Resumo:
Using first-principles electronic structure calculations we find that the titanium vacancy and divacancy may be responsible for the unexpected ferromagnetism in undoped anatase TiO2. An isolated titanium vacancy produces a magnetic moment of 3.5 mu(B), and an isolated titanium divacancy produces a magnetic moment of 2.0 mu(B). The origin of the collective magnetic moments is the holes introduced by the titanium vacancy or divacancy in the narrow nonbonding oxygen 2p(pi) band. At the center of the divacancy, an O-2 dimer forms during the relaxation, which lowers the total energy of the system and leads to the decrease in the total magnetic moment due to a hole compensation mechanism. For both the two native defects, the ferromagnetic state is more stable than the antiferromagnetic state.
Design of Narrow-Gap TiO2: A Passivated Codoping Approach for Enhanced Photoelectrochemical Activity
Resumo:
To improve the photoelectrochemical activity of TiO2 for hydrogen production through water splitting, the band edges of TiO2 should be tailored to match with visible light absorption and the hydrogen or oxygen production levels. By analyzing the band structure of TiO2 and the chemical potentials of the dopants, we propose that the band edges of TiO2 can be modified by passivated codopants such as (Mo+C) to shift the valence band edge up significantly, while leaving the conduction band edge almost unchanged, thus satisfying the stringent requirements. The design principle for the band-edge modification should be applicable to other wide-band-gap semiconductors.
Resumo:
BACKGROUND: Ultraviolet light emitting diodes (UV LEDs) were used as a light source in TiO2 photocatalysis because of their many advantages, such as, long life, safety, low pollution, etc. In this experiment, a light source panel was successfully fabricated with UV LEDs, the light intensities of which were relatively uniform.