987 resultados para Rapid Identification
Resumo:
Functional magnetic resonance imaging (fMRI) has become an important tool in Neuroscience due to its noninvasive and high spatial resolution properties compared to other methods like PET or EEG. Characterization of the neural connectivity has been the aim of several cognitive researches, as the interactions among cortical areas lie at the heart of many brain dysfunctions and mental disorders. Several methods like correlation analysis, structural equation modeling, and dynamic causal models have been proposed to quantify connectivity strength. An important concept related to connectivity modeling is Granger causality, which is one of the most popular definitions for the measure of directional dependence between time series. In this article, we propose the application of the partial directed coherence (PDC) for the connectivity analysis of multisubject fMRI data using multivariate bootstrap. PDC is a frequency domain counterpart of Granger causality and has become a very prominent tool in EEG studies. The achieved frequency decomposition of connectivity is useful in separating interactions from neural modules from those originating in scanner noise, breath, and heart beating. Real fMRI dataset of six subjects executing a language processing protocol was used for the analysis of connectivity. Hum Brain Mapp 30:452-461, 2009. (C) 2007 Wiley-Liss, Inc.
Resumo:
This paper presents the design and implementation of an embedded soft sensor, i. e., a generic and autonomous hardware module, which can be applied to many complex plants, wherein a certain variable cannot be directly measured. It is implemented based on a fuzzy identification algorithm called ""Limited Rules"", employed to model continuous nonlinear processes. The fuzzy model has a Takagi-Sugeno-Kang structure and the premise parameters are defined based on the Fuzzy C-Means (FCM) clustering algorithm. The firmware contains the soft sensor and it runs online, estimating the target variable from other available variables. Tests have been performed using a simulated pH neutralization plant. The results of the embedded soft sensor have been considered satisfactory. A complete embedded inferential control system is also presented, including a soft sensor and a PID controller. (c) 2007, ISA. Published by Elsevier Ltd. All rights reserved.
Resumo:
Titanium oxide (TiO(2)) has been extensively applied in the medical area due to its proved biocompatibility with human cells [1]. This work presents the characterization of titanium oxide thin films as a potential dielectric to be applied in ion sensitive field-effect transistors. The films were obtained by rapid thermal oxidation and annealing (at 300, 600, 960 and 1200 degrees C) of thin titanium films of different thicknesses (5 nm, 10 nm and 20 nm) deposited by e-beam evaporation on silicon wafers. These films were analyzed as-deposited and after annealing in forming gas for 25 min by Ellipsometry, Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy (RAMAN), Atomic Force Microscopy (AFM), Rutherford Backscattering Spectroscopy (RBS) and Ti-K edge X-ray Absorption Near Edge Structure (XANES). Thin film thickness, roughness, surface grain sizes, refractive indexes and oxygen concentration depend on the oxidation and annealing temperature. Structural characterization showed mainly presence of the crystalline rutile phase, however, other oxides such Ti(2)O(3), an interfacial SiO(2) layer between the dielectric and the substrate and the anatase crystalline phase of TiO(2) films were also identified. Electrical characteristics were obtained by means of I-V and C-V measured curves of Al/Si/TiO(x)/Al capacitors. These curves showed that the films had high dielectric constants between 12 and 33, interface charge density of about 10(10)/cm(2) and leakage current density between 1 and 10(-4) A/cm(2). Field-effect transistors were fabricated in order to analyze I(D) x V(DS) and log I(D) x Bias curves. Early voltage value of -1629 V, R(OUT) value of 215 M Omega and slope of 100 mV/dec were determined for the 20 nm TiO(x) film thermally treated at 960 degrees C. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work deals with a procedure for model re-identification of a process in closed loop with ail already existing commercial MPC. The controller considered here has a two-layer structure where the upper layer performs a target calculation based on a simplified steady-state optimization of the process. Here, it is proposed a methodology where a test signal is introduced in a tuning parameter of the target calculation layer. When the outputs are controlled by zones instead of at fixed set points, the approach allows the continuous operation of the process without an excessive disruption of the operating objectives as process constraints and product specifications remain satisfied during the identification test. The application of the method is illustrated through the simulation of two processes of the oil refining industry. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A prenylated benzophenone, hyperibone A, was isolated from the hexane fraction of Brazilian propolis type 6. Its structure was determined by spectral analysis including 2D NMR. This compound exhibited cytotoxic activity against HeLa tumor cells (IC(50) = 0.1756 mu M), strong antimicrobial activity (MIC range-0.73-6.6 mu g/mL; MBC range-2.92-106 mu g/mL) against Streptococcus mutans, Streptococcus sobrinus, Streptococcus oralis, Staphylococcus aureus, and Actinomyces naeslundii, and the results of its cytotoxic and antimicrobial activities were considered good. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
An important topic in genomic sequence analysis is the identification of protein coding regions. In this context, several coding DNA model-independent methods based on the occurrence of specific patterns of nucleotides at coding regions have been proposed. Nonetheless, these methods have not been completely suitable due to their dependence on an empirically predefined window length required for a local analysis of a DNA region. We introduce a method based on a modified Gabor-wavelet transform (MGWT) for the identification of protein coding regions. This novel transform is tuned to analyze periodic signal components and presents the advantage of being independent of the window length. We compared the performance of the MGWT with other methods by using eukaryote data sets. The results show that MGWT outperforms all assessed model-independent methods with respect to identification accuracy. These results indicate that the source of at least part of the identification errors produced by the previous methods is the fixed working scale. The new method not only avoids this source of errors but also makes a tool available for detailed exploration of the nucleotide occurrence.
Resumo:
Yellow leaf syndrome was a serious problem in the beginning of the 1990s in Brazil, when yield losses were estimated to be around 50%. The disease is currently endemic, but it is considered potentially important. Previous studies have revealed only the presence of a luteovirus associated with the disease in Brazil. We report that a phytoplasma of 16SrI-B is also associated with this disease. This is the first demonstration of the presence of a group 16SrI-B phytoplasma in association with sugarcane yellow leaf in Brazil.
Resumo:
Symptoms resembling giant calyx, a graft-transmissible disease, were observed on 1-5% of eggplant (aubergine; Solanum melongena L.) plants in production fields in Sao Paulo state, Brazil. Phytoplasmas were detected in 1 2 of 1 2 samples from symptomatic plants that were analysed by a nested PCR assay employing 16S rRNA gene primers R16mF2/R16mR1 followed by R16F2n/R16R2. RFLP analysis of the resulting rRNA gene products (1.2 kb) indicated that all plants contained similar phytoplasmas, each closely resembling strains previously classified as members of RFLP group 16SrIII (X-disease group). Virtual RFLP and phylogenetic analyses of sequences derived from PCR products identified phytoplasmas infecting eggplant crops grown in Piracicaba as a lineage of the subgroup 16SrIII-J, whereas phytoplasmas detected in plants grown in Braganca Paulista were tentatively classified as members of a novel subgroup 16SrIII-U. These findings confirm eggplant as a new host of group 16SrIII-J phytoplasmas and extend the known diversity of strains belonging to this group in Brazil.
Resumo:
Marker assisted selection depends on the identification of tightly linked association between marker and the trait of interest. In the present work, functional (EST-SSRs) and genomic (gSSRs) microsatellite markers were used to detect putative QTLs for sugarcane yield components (stalk number, diameter and height) and as well as for quality parameters (Brix, Pol and fibre) in plant cane. The mapping population (200 individuals) was derived from a bi-parental cross (IACSP95-3018 x IACSP93-3046) from the IAC Sugarcane Breeding Program. As the map is under construction, single marker trait association analysis based on the likelihood ratio test was undertaken to detect the QTLs. Of the 215 single dose markers evaluated (1:1 and 3:1), 90 (42%) were associated with putative QTLs involving 43 microsatellite primers (18 gSSRs and 25 EST-SSRs). For the yield components, 41 marker/trait associations were found: 20 for height, 6 for diameter and 15 for stalk number. An EST-SSRs marker with homology to non-phototropic hypocotyls 4 (NPH4) protein was associated with a putative QTL with positive effect for diameter as also with a negative effect for stalk number. In relation to the quality parameters, 18 marker trait associations were found for Brix, 19 for Pol, and 12 for fibre. For fibre, 58% of the QTLs detected showed a negative effect on this trait. Some makers associated with QTLs with a negative effect for fibre showed a positive effect for Pol, reflecting the negative correlation generally observed between these traits.
Resumo:
Diagnosing herbicide-resistant weed populations is the first step for herbicide resistance management. Monitoring the nature, distribution, and abundance of the resistant plants in fields demands efficient and effective screening tests. Different glyphosate resistant populations of Lolium multiflorum (VA) and L. rigidum (C) were used in assays for testing their effectiveness to detect herbicide resistance. According to a Petri dish bioassay 7 days after treatment (DAT), the VA and the C populations were 27 and 31 times more resistant to glyphosate than the susceptible populations, L. multiflorum (SM) and L. rigidum (SR), respectively. On a whole-plant bioassay (21 DAT), the VA and the C populations were 6 and 11 times more resistant to glyphosate than their respective susceptible populations. The susceptible populations accumulated 2.5 and 1.4-fold more shikimic acid 48 hours after treatment (HAT), than the resistant VA and C. Glyphosate gradually inhibited net photosynthesis in all populations but at 48-72 HAT the resistant plants recovered, whereas no recovery was detected in susceptible populations. All assays were capable of detecting the resistant populations and this may be useful for farmers and consultants as an effective tool to reduce the spread of the resistant populations through quicker implementation of alternative weed management practices. However, they differed in time, costs and equipments necessaries for successfully carrying on the tests. Regarding costs, the cheapest ones were Petri dish and whole-plant bioassays, but they are time-consuming methods as the major constraints are the collection of seeds from the field and at least some weeks to evaluate the resistance. The shikimic acid and net photosynthesis assays were the quickest ones but they demand sophisticated equipments which could restrict its use.
Resumo:
Rapid alkalinization factor (RALF) is part of a growing family of small peptides with hormone characteristics in plants. Initially isolated from leaves of tobacco plants, RALF peptides can be found throughout the plant kingdom and they are expressed ubiquitously in plants. We took advantage of the small gene family size of RALF genes in sugarcane and the ordered cellular growth of the grass sugarcane leaves to gain information about the function of RALF peptides in plants. Here we report the isolation of two RALF peptides from leaves of sugarcane plants using the alkalinization assay. SacRALF1 was the most abundant and, when added to culture media, inhibited growth of microcalli derived from cell suspension cultures at concentrations as low as 0.1 mu M. Microcalli exposed to exogenous SacRALF1 for 5 days showed a reduced number of elongated cells. Only four copies of SacRALF genes were found in sugarcane plants. All four SacRALF genes are highly expressed in young and expanding leaves and show a low or undetectable level of expression in expanded leaves. In half-emerged leaf blades, SacRALF transcripts were found at high levels at the basal portion of the leaf and at low levels at the apical portion. Gene expression analyzes localize SacRALF genes in elongation zones of roots and leaves. Mature leaves, which are devoid of expanding cells, do not show considerable expression of SacRALF genes. Our findings are consistent with SacRALF genes playing a role in plant development potentially regulating tissue expansion.
Resumo:
An analytical procedure for the determination of Hg in otter (Lontra longicaudis) feces was developed, to separate fish scales for the identification of the animal diet. Samples were washed with ultra-pure water and the suspension was sampled and transferred for digestion. The solubilization was performed with nitric-perchloric acid mixture, and detection carried out by the atomic fluorescence spectrometry (AFS). The quality of the analytical procedure was assessed by analyzing in-house standard solutions and certified reference materials. Total Hg concentrations were in the range of 7.6-156 ng g(-1) (July 2004), 25.6-277 ng g(-1) (January 2005) and 14.6-744 ng g(-1) (May 2005) that is approximately the same order of magnitude for all samples collected in two reservoirs at the Tiete River, Brazil. Although Hg concentrations varied with sampling periods and diet, high levels were correlated to the percentage of carnivorous fish scales present in the otter feces. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A Carica papaya plant with severe yellow leaf mosaic, leaf distortion, and systemic necrosis was found in the municipality of Piracicaba, state of So Paulo, Brazil. Transmission electron microscopy (TEM) analysis revealed the presence of potyvirus-like particles and bacilliform particles similar to those of the Alfamovirus genus. The potyvirus was identified as Papaya ringspot virus-type P (PRSV-P). Biological, serological, and molecular studies confirmed the bacilliform virus as an isolate of Alfalfa mosaic virus (AMV). Partial nucleotide and amino acid sequences of the coat protein gene of this AMV isolate shared 97-98% identity with the AMV isolates in the GenBank database. This report is the first of the natural infection of papaya plants by AMV.
Resumo:
Objectives: The resazurin microtitre plate assay (REMA) was evaluated to determine the susceptibility of Mycobacterium tuberculosis to pyrazinamide, and was compared with the broth microdilution method (BMM), the absolute concentration method (ACM) and pyrazinamidase (PZase) determination. Methods: Thirty-four M. tuberculosis clinical isolates (26 susceptible and 8 resistant to pyrazinamide) and reference strains M. tuberculosis H37Rv ATCC 27294 and Mycobacterium bovis AN5 were tested. Results: REMA and BMM showed 100% specificity and sensitivity when compared with ACM; BMM, however, demanded more reading time. The PZase determination assay showed 87.50% and 100% sensitivity and specificity, respectively. Conclusions: All tested methods in this preliminary study showed excellent sensitivity and specificity for the determination of pyrazinamide susceptibility of M. tuberculosis, but REMA was faster, low-cost and easy to perform and interpret. Additional studies evaluating REMA for differentiating pyrazinamide-resistant and-susceptible M. tuberculosis should be conducted on an extended panel of clinical isolates.
Resumo:
Microemulsion electrokinetic capillary chromatography has been successfully applied to the separation and determination of water-soluble vitamins (thiamine hydrochloride, riboflavin, niacin, pyridoxine hydrochloride, folic acid, cobalamin, ascorbic acid) and a fat-soluble vitamin (alpha-tocopherol acetate). The optimal microemulsion buffer contained sodium dodecylsulfate (SDS) as surfactant, butan-1-ol as the co-surfactant, ethyl acetate as the oil and pH 9.2 tetraborate buffer, modified with 15% (v/v) 2-propanol. UV detection at 214 nm gave adequate sensitivity without interference from sample excipients. Under the optimized conditions, the vitamins were baseline separated in less than 7 min. Analytical curves of peak area versus concentration presented coefficients of determination (R (2) ) > 0.99, acceptable limits of quantification between 8.40 and 16.23 mu g mL(-1) were obtained. Vitamin levels in liquid formulation were quantified with intra-day precision better than 0.99% RSD for migration time and 1.19% RSD for peak area ratio. Recoveries ranged between 98.7 and 101.7%. The method was considered appropriate for rapid and routine analysis.