978 resultados para Photonics
Resumo:
We have fabricated 1.3-mu m InAs-GaAs quantum-dot (QD) lasers with and without p-type modulation doping and their characteristics have been investigated. We find that introducing p-type doping in active regions can improve the temperature stability of 1.3-mu m InAs-GaAs QD lasers, but it does not, increase the saturation modal gain of the QD lasers. The saturation modal gain obtained from the two types of lasers is identical (17.5 cm(-1)). Moreover, the characteristic temperature increases as cavity length increases for the two types of lasers, and it improves more significantly for the lasers with p-type doping due to their higher gain.
Resumo:
We propose a configuration for suppressing pumps in a broad- and flat-hand tunable nondegenerate four-wave mixing (FWM) wavelength converter. The signal and pumps are coupled into a highly nonlinear photonic crystal fiber symmetrical Sagnac loop. After the FWM wavelength conversion in the loop, the idler is separated from the pumps without a filter. In our experiment, a flat wavelength conversion bandwidth of 36 rim, conversion efficiency of-11 dB., pump-to-signal suppression ratio of 48 dB, and idler-to-pump suppression ratio of 15 dB are achieved.
Resumo:
In this work, a novel bonding method using silicate gel as the bonding medium was developed to fabricate an InGaAs narrow-band response resonant cavity enhanced photodetector on a silicon substrate. The bonding was performed at a low temperature of 350 degreesC without any special treatment on bonding surfaces and a Si-based narrow-band response InGaAs photodetector was successfully fabricated, with a quantum efficiency of 34.4% at the resonance wavelength of 1.54 mum, and a full-width at half-maximum of about 27 nm. The photodetector has a linear photoresponse up to 4-mW optical power under 1.5 V or higher reverse bias. The low temperature wafer bonding process demonstrates a great potential in device fabrication.
Resumo:
Semiconductor equilateral triangle microresonators (ETRs) with side length of 5, 10, and 20 mum are fabricated by the two-step inductively coupled plasma (ICP) etching technique. The mode properties of fabricated InGaAsP ETRs are investigated experimentally by photoluminescence (PL) with the pumping source of a 980-nm semiconductor laser and distinct peaks are observed in the measured PL spectra. The wavelength spacings of the distinct peaks agree very well with the theoretical longitudinal mode intervals of the fundamental transverse modes in the ETRs, which verifies that the distinct peaks are corresponding to the enhancement of resonant modes. The mode quality factors are calculated from the width of the resonant peaks of the PL spectra, which are about 100 for the ETR with side length of 20 mum.
Resumo:
The quality factors of modes in square resonators are calculated based on the far-field emission of the analytical field distribution. The obtained quality factors are in reasonable agreement with those calculated by the finite-difference time-domain (FDTD) technique and Pade approximation method. The emission power in the square diagonal directions for whispering-gallery-like modes in square resonators is zero due to the interference cancellation caused by the odd field distributions relative to the diagonal mirror planes, so they have larger quality factors than the modes with even field distribution.
Resumo:
By inclining the injection stripe of a multiple layer stacked self-assembled InAs quantum dot (SAQD) laser diode structure of 6degrees with respect to the facets, high-power and broad-band superluminescent diodes (SLDs) have been fabricated. It indicates that high-performance SLD could be easily realized by using SAQD as the active region.
Resumo:
GaInAsP-InP microsquare resonators with InP pedestals are fabricated by two-step chemical etching, and obvious mode peaks are observed in the photoluminescence spectra of the resonators. The mode Q-factors about 500 are obtained for a microsquare resonator with the side length of 7 mu m. The experimental mode interval is in agreement with that predicted by the light ray method based on the cavity length, instead of that of the whispering-gallery (WG)-like modes, which has mode interval twice of that determined by the cavity length. The finite-difference time-domain simulation shows that a little asymmetry may greatly reduce the difference of the Q-factors between the WG-like modes and the other modes.
Resumo:
A ridge distributed feedback laser monolithically integrated with a buried-ridge-stripe spot-size converter operating at 1.55 mu m was successfully fabricated by means of low-energy ion implantation quantum-well intermixing and dual-core technologies. The passive waveguide was optically combined with a laterally exponentially tapered active core to control the mode size. The devices emit in a single transverse and single longitudinal mode with a sidemode suppression ratio of 38.0 dB. The threshold current was 25 mA. The beam divergence angles in the horizontal and vertical directions were as small as 8.0 degrees x 12.6 degrees, respectively, resulting in 3.0-dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
In the optical network, the quick and accurate alignment with wavelength is an important issue during the channel detection. At this point, a filter having flat-top response characteristic is an effective solution. Based on multiple-step-type Fabry-Perot cavity structure, a novel all-Si-based thermooptical tunable flat-top filter with narrow-band has been fabricated, using our patent silicon-on-reflector bonding technology. The device demonstrated a 1-dB flat-top width of 1 nm, 3-dB band of 3 nm, free spectra range of 8 nm, and the tuning range of 4.6 nm was obtained under the applied voltage of 4 V.
Resumo:
This letter presents a new method for extracting the intrinsic frequency response of a p-i-n photodiode (PD) from the measured frequency response of the PD at different bias voltages. This method is much simpler than the conventional calibration method, since only the measured scattering parameters are required, and there is no need to calibrate the test fixtures and the lightwave source. Experiment shows that the proposed method is as accurate as the calibration method.
Resumo:
Semiconductor optical amplifier and electroabsorption modulator monolithically integrated with dual-waveguide spot-size converters at the input and output ports is demonstrated by means of selective area growth, quantum-well intermixing, and asymmetric twin waveguide technologies. At the wavelength range of 1550 similar to 1600 nm, lossless operation with extinction ratios of 25-dB dc and 11.8-dB radio frequency and more than 10-GHz 3-dB modulation bandwidth is successfully achieved. The output beam divergence angles of the device in the horizontal and vertical directions are as small as 7.3 degrees x 10.6 degrees, respectively, resulting in 3.0-dB coupling loss with cleaved single-mode optical fiber.
Resumo:
A rearrangeable nonblocking 4 x 4 thermooptic silicon-on-insulator waveguide switch matrix at 1.55-mu m integrated spot size converters is designed and fabricated for the first time. The insertion losses and polarization-dependent losses of the four channels are less than 10 and 0.8 dB, respectively. The extinction ratios are larger than 20 dB. The response times are 4.6 mu s for rising edge and 1.9 mu s for failing edge.
Resumo:
A folding rearrangeable nonblocking 4 x 4 optical matrix switch was designed and fabricated on silicon-on-insulator wafer. To compress chip size, switch elements (SEs) were interconnected by total internal reflection (TIR) mirrors instead of conventional S-bends. For obtaining smooth interfaces, potassium hydroxide anisotropic chemical etching of silicon was utilized to make the matrix switch for the first time. The device has a compact size of 20 x 1.6 mm(2) and a fast response of 7.5 mu s. The power consumption of each 2 x 2 SE and the average excess loss per mirror were 145 mW and -1.1 dB, respectively. Low path dependence of +/- 0.7 dB in total excess loss was obtained because of the symmetry of propagation paths in this novel matrix switch.
Resumo:
We describe a new method for extracting the intrinsic response of a laser diode from S-parameters measured using a calibrated vector network analyzer. The experimental results obtained using the new method are compared with those obtained using the optical modulation method and the frequency response subtraction method. Good agreement has been obtained, confirming the new method validity and accuracy. The new method has the advantages of obtaining the intrinsic characteristics of a laser diode with conventional measurements using a network analyzer.
Resumo:
The accurate mode field profile of high negative dispersion dual-core photonic crystal fiber (DCPCF) is measured. The mode field evolution of DCPCF with wavelength is studied experimentally for the first time. The measurement result shows that no individual inner core mode or outer core mode exists, but two modes coexist simultaneously, and either one of them is dominant. The mode field evolution versus wavelength indicates that the wavelength range where the modes coupling takes place between inner core and outer core is broader than that of theoretical design.