985 resultados para Photoluminescence properties
Resumo:
The growth of InAs quantum dots on vicinal GaAs (100) Substrates was systematically studied using low-pressure metalorganic chemical vapor deposition (MOCVD). The dots showed a clear bimodal size distribution on vicinal substrates. The way of evolution of this bimodal size distribution was studied as a function of growth temperature, InAs layer thickness and InAs deposition rate. The optical properties of dots grown on vicinal substrates were also studied by photoluminescence (PL). It was found that, compared with dots on exact substrates, dots on vicinal substrates had better optical properties such as a narrower PL line width, a longer emission wavelength, and a larger PL intensity. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We have observed an unusual temperature sensitivity of the photoluminescence (PL) peak energy for InAs quantum dots grown on InAs quantum wires (QDOWs) on InP substrate. The net temperature shift of PL wavelength of the QDOWs ranges from 0.8 to -4. angstrom/degrees C depending upon the Si doping concentration in the samples. This unusual temperature behavior can be mainly ascribed to the stress amplification in the QDOWs when the thermal strain is transferred from the surrounding InAs wires. This offers an opportunity for realizing quantum dot laser devices with a temperature insensitive lasing wavelength. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Both cracked and crack-free GaN/Al0.55Ga0.45N multiple quantum wells (MQWs) grown on GaN template by metalorganic chemical vapor deposition have been studied by triple-axis X-ray diffraction, grazing-incidence X-ray reflectivity, atomic force microscope, photoluminescence spectroscopy and low-energy positron annihilation spectroscopy. The experimental results show that cracks generation not only deteriorates the surface morphology, but also leads to a period dispersion and roughens the interfaces of MQWs. The mean density of dislocations in MQWs, determined from the average full-width at half-maximum of to-scan of each satellite peak, has been significantly enhanced by the cracks generation. Furthermore, the measurement of annihilation-line Doppler broadening reveals a higher concentration of negatively charged vacancies in the cracked MQWs. The combination of these vacancies and the high density of edge dislocations are assumed to contribute to the highly enhanced yellow luminescence in the cracked sample. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
It is found that both methods using either continuous Sb supply or pre-deposition of a very thin Sb layer are efficient for the Sb-assisted molecular beam epitaxy growth of highly strained InGaAs/GaAs quantum wells (QWs). The emission of QWs is extended to long wavelength close to 1.25 mu m with high luminescence efficiency at room temperature. The influence of rapid thermal annealing (RTA) on the photoluminescence intensity critically depends on the annealing temperature and duration for highly strained QWs. A relatively low RTA temperature of 700 degrees C with a short duration of 10 s is suggested for optimizing the annealing effect. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
High quality ZnO films have been successfully grown on a Si (100) substrate by metal organic chemical vapour deposition with a gamma-Al2O3 buffer. The crystal structure, surface morphology and optical properties of the ZnO films were characterized by x-ray diffraction, Raman spectroscopy, atomic force microscopy and photoluminescence (PL) spectroscopy. The propel-ties of the films with the Al2O3 buffer were improved in comparison with those of as-grown ZnO films. It is shown that the ZnO films with the gamma-Al2O3 buffer grown on Si (100) substrates have a highly-preferential c-axis (0002) orientation, a narrow (0002) peak, smooth surface morphology and better PL spectral properties. This demonstrates that the use of gamma-Al2O3/Si as a ZnO substrate is beneficial for reducing the residual stress for further growth of ZnO films, compared with the growth on bulk Si substrates.
Resumo:
The influence of nonradiative recombination on the photoluminescence (PL) decay dynamics in GaInNAs/GaAs quantum wells is studied by time-resolved photoluminescence under various excitation intensities. It is found that the PL decay process strongly depends on the excitation intensity. In particular, under the moderate excitation levels the PL decay curves exhibit unusual nonexponential behavior and show a convex shape. By introducing a new parameter of the effective concentration of nonradiative recombination centers into a rate equation, the observed results are well simulated. The cw PL data further demonstrate the nonradiative recombination effect on the optical properties of GaInNAs/GaAs quantum wells. (c) 2006 American Institute of Physics.
Resumo:
We report on the photoluminescence (PL) properties of InAs/InAlAs/InP quantum wires (QWRs) with various InAs deposited thickness. The PL linewidth of the QWRs decreases with increasing InAs deposited thickness due to the different thicknesses of the QWRs and defects in the samples. The defects and lateral composition modulation of the InAlAs layers play an important role in the temperature-dependent PL properties of the samples. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The structural and optical properties of GaAsSb/GaAs quantum wells (QWs) and strain-compensated GaAsP/GaAs/GaAsSb/GaAs/GaAsP QWs grown on a GaAs substrate by molecular beam epitaxy are investigated using high-resolution x-ray diffraction and photoluminescence (PL) measurements. We demonstrated that the insertion of tensile GaAsP layers into the active region of GaAsSb/GaAs QWs effectively improves the structural and optical quality. Even the Sb composition is as high as 0.39. The PL spectra at 11 K and room temperature indicate that the PL peak of strain-compensated QWs has a narrower linewidth and higher intensity in comparison to the sample without strain compensation. The results of PL peak blueshift with increasing excitation show the strain-compensated GaAsSb/GaAs interface characteristic of type-I band alignment. (C) 2003 American Institute of Physics.
Resumo:
The Raman back scattering/channeling technique was used to analyze the damage recovery at different annealing temperatures and to determine the lattice location of the Er-implanted GaN samples. A better damage recovery was observed with increasing annealing temperature below 1000degreesC, but a complete recovery of the implantation damage cannot be achieved. For a sample annealed for at 900degreesC 30 min the Er and Ga angular scans across the <0001> axis was measured indicating that about 76% of Er ions occupies substitutional sites. Moreover, the photoluminscence (PL) properties of Er-implanted GaN thin films have been also studied. The experimental results indicate that those samples annealed at a higher temperature below 1000degreesC had a stronger 1539nm PL intensity. The thermal quenching of PL intensity for samples annealed at 900degreesC measured at temperatures from 15K to 300K is 30%.
Resumo:
We have studied the growth and optical properties of AlInGaN alloys in this article. By the measurement of three samples, we found that the incorporation of In decreases with the increase of temperature, while there is nearly no change for the incorporation of Al. The sample grown at the lowest temperature had the best material and optical properties, which owes to the high In component, because the In component can reduce defects and improve the material quality. We also used the time-resolved photoluminescence(PL) to study the mechanism of recombination of carriers, and found that the time dependence of PL intensity was not in exponential decay, but in stretched-exponential decay. Through the study of the character of this decay, we come to the conclusion that the emission comes from the recombination of localized excitons. Once more, this localization exhibites the character of quantum dots, and the stretched, exponential decay results from the hopping of carriers between different localized states. In addition, we have used the relation of emission energy dependence of carrier's lifetime and the character of radiative recombination and non-radiative combination to confirm our conclusion.
Resumo:
InAs quantum dots have been grown by solid source molecular beam epitaxy on different matrix to investigate the effect on the structure and optical properties. High density of 1.02 x 10(11) cm(-2) of InAs islands on In0.15Ga0.85As and In0.15Al0.85As underlying layer has been achieved. Atomic force microscopy and photoluminescence spectra show the size evolution of InAs islands on In0.15Ga0.85As underlying layer. A strong 1.3 mum photoluminescence from InAs islands on In0.15Ga0.85As underlying layer and with InGaAs strain-reduced layer has been obtained. Single-mirror light emitting diode structures with InAs quantum dots capped by InGaAs grown on InGaAs layer as active layer were fabricated and the corresponding radiative efficiency was deduced to be as high as 20.5%. Our results provide important information for optimizing the epitaxial structures of 1.3 mum wavelength quantum dots devices. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The influences of AlN buffer thickness on the optical and the crystalline properties of metalorganic chemical vapor deposition wurtzite GaN layers on Si(I 11) substrate have been investigated. High-resolution X-ray diffraction and photoluminescence measurement reveal that the thickness of AlN buffer exerts a strong influence on the distribution of dislocation and stress in GaN epilayer. The evidence is further reinforced by atomic force microscopic observation of AlN nucleation process. The optimum thickness of AlN buffer to effectively suppress Si diffusion has been determined by secondary-ion mass spectroscopy to be in the range of 13-20 nm. In addition, it is found that appropriate Si diffusion in AlN buffer helps to compensate the tensile strain in GaN, which subsequently improves the optical quality of GaN on Si(I 1, 1), and reduces the cracks over the GaN surface. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A new self-assembled quantum dots system where InGaAs dots are formed on InAlAs wetting layer and embedded in GaAs matrix has been fabricated. The photoluminescence linewidth increases with increasing temperature, which is very different from normal In(Ga)As/GaAs quantum dots. The results are attributed to a higher energy of the wetting layer which breaks the carrier transfer channel between dots and keeps the dots more isolated from each other.
Resumo:
Two Mg-doped GaN films with different doping concentrations were grown by a metalorganic chemical vapor deposition technique. Photoluminescence (PL) experiments were carried out to investigate the optical properties of these films. For highly Mg-doped GaN, the PL spectra at 10 K are composed of a blue luminescence (BL) band at 2.857 eV and two excitonic luminescence lines at 3.342 eV and 3.282 eV, in addition to a L2 phonon replica at 3.212 eV. The intensity of the L1 line decreases monotonously with an increase,in temperature. However, the intensity of the L2 line first slowly increases at first, and then decreases quickly with an increase in temperature. The two lines are attributed to bound excitonic emissions at extended defects. The BL band is most likely due to the transition from deep donor Mg-V-N complex to Mg shallow acceptor. From the temperature dependence of the luminescence peak intensity of the BL band, the activation energy of acceptor Mg was found to be 290 meV. (C) 2003 American Vacuum Society.
Resumo:
The ternary Zn1-xCdxO (0less than or equal toxless than or equal to0.6) alloying films with highly c-axis orientation have been deposited on Si(111) substrates by direct current reactive magnetron sputtering method. X-ray diffraction measurement indicates that the wurtzite-type structure of ZnO can be stabilized up to nominal Cd content x similar to 0.6 without cubic CdO phase separation. The lattice parameter c of Zn1-xCdxO increases almost linearly from 5.229 Angstrom (x = 0) to 5.247 Angstrom (x = 0.6), indicating that Cd substitution takes place on the Zn lattice sites. The photoluminescence spectra of the Zn1-xCdxO thin films measured at 12 K display a substantial red shift (similar to0.3 eV) in the near-band-edges (NBEs) emission of ZnO: from 3.39 eV of ZnO to 3.00 eV of Zn0.4Cd0.6O. The direct modulation of band gap caused by Zn/Cd substitution is responsible for the red shift effect in NBE emission of ZnO. (C) 2003 Elsevier Science B.V. All rights reserved.