950 resultados para Orthogonal polynomial
Resumo:
Quasi-uniform grids of the sphere have become popular recently since they avoid parallel scaling bottle- necks associated with the poles of latitude–longitude grids. However quasi-uniform grids of the sphere are often non- orthogonal. A version of the C-grid for arbitrary non- orthogonal grids is presented which gives some of the mimetic properties of the orthogonal C-grid. Exact energy conservation is sacrificed for improved accuracy and the re- sulting scheme numerically conserves energy and potential enstrophy well. The non-orthogonal nature means that the scheme can be used on a cubed sphere. The advantage of the cubed sphere is that it does not admit the computa- tional modes of the hexagonal or triangular C-grids. On var- ious shallow-water test cases, the non-orthogonal scheme on a cubed sphere has accuracy less than or equal to the orthog- onal scheme on an orthogonal hexagonal icosahedron. A new diamond grid is presented consisting of quasi- uniform quadrilaterals which is more nearly orthogonal than the equal-angle cubed sphere but with otherwise similar properties. It performs better than the cubed sphere in ev- ery way and should be used instead in codes which allow a flexible grid structure.
Resumo:
An efficient two-level model identification method aiming at maximising a model׳s generalisation capability is proposed for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularisation parameters in the elastic net are optimised using a particle swarm optimisation (PSO) algorithm at the upper level by minimising the leave one out (LOO) mean square error (LOOMSE). There are two elements of original contributions. Firstly an elastic net cost function is defined and applied based on orthogonal decomposition, which facilitates the automatic model structure selection process with no need of using a predetermined error tolerance to terminate the forward selection process. Secondly it is shown that the LOOMSE based on the resultant ENOFR models can be analytically computed without actually splitting the data set, and the associate computation cost is small due to the ENOFR procedure. Consequently a fully automated procedure is achieved without resort to any other validation data set for iterative model evaluation. Illustrative examples are included to demonstrate the effectiveness of the new approaches.
Resumo:
An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.
Resumo:
We show how two linearly independent vectors can be used to construct two orthogonal vectors of equal magnitude in a simple way. The proof that the constructed vectors are orthogonal and of equal magnitude is a good exercise for students studying properties of scalar and vector triple products. We then show how this result can be used to prove van Aubel's theorem that relates the two line segments joining the centres of squares on opposite sides of a plane quadrilateral.
Resumo:
Let Y = (f, g, h): R(3) -> R(3) be a C(2) map and let Spec(Y) denote the set of eigenvalues of the derivative DY(p), when p varies in R(3). We begin proving that if, for some epsilon > 0, Spec(Y) boolean AND (-epsilon, epsilon) = empty set, then the foliation F(k), with k is an element of {f, g, h}, made up by the level surfaces {k = constant}, consists just of planes. As a consequence, we prove a bijectivity result related to the three-dimensional case of Jelonek`s Jacobian Conjecture for polynomial maps of R(n).
Resumo:
In this paper, we classify all the global phase portraits of the quadratic polynomial vector fields having a rational first integral of degree 3. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A positive summability trigonometric kernel {K(n)(theta)}(infinity)(n=1) is generated through a sequence of univalent polynomials constructed by Suffridge. We prove that the convolution {K(n) * f} approximates every continuous 2 pi-periodic function f with the rate omega(f, 1/n), where omega(f, delta) denotes the modulus of continuity, and this provides a new proof of the classical Jackson`s theorem. Despite that it turns out that K(n)(theta) coincide with positive cosine polynomials generated by Fejer, our proof differs from others known in the literature.
Resumo:
Partition of Unity Implicits (PUI) has been recently introduced for surface reconstruction from point clouds. In this work, we propose a PUI method that employs a set of well-observed solutions in order to produce geometrically pleasant results without requiring time consuming or mathematically overloaded computations. One feature of our technique is the use of multivariate orthogonal polynomials in the least-squares approximation, which allows the recursive refinement of the local fittings in terms of the degree of the polynomial. However, since the use of high-order approximations based only on the number of available points is not reliable, we introduce the concept of coverage domain. In addition, the method relies on the use of an algebraically defined triangulation to handle two important tasks in PUI: the spatial decomposition and an adaptive polygonization. As the spatial subdivision is based on tetrahedra, the generated mesh may present poorly-shaped triangles that are improved in this work by means a specific vertex displacement technique. Furthermore, we also address sharp features and raw data treatment. A further contribution is based on the PUI locality property that leads to an intuitive scheme for improving or repairing the surface by means of editing local functions.
Resumo:
A mixed integer continuous nonlinear model and a solution method for the problem of orthogonally packing identical rectangles within an arbitrary convex region are introduced in the present work. The convex region is assumed to be made of an isotropic material in such a way that arbitrary rotations of the items, preserving the orthogonality constraint, are allowed. The solution method is based on a combination of branch and bound and active-set strategies for bound-constrained minimization of smooth functions. Numerical results show the reliability of the presented approach. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We investigate several two-dimensional guillotine cutting stock problems and their variants in which orthogonal rotations are allowed. We first present two dynamic programming based algorithms for the Rectangular Knapsack (RK) problem and its variants in which the patterns must be staged. The first algorithm solves the recurrence formula proposed by Beasley; the second algorithm - for staged patterns - also uses a recurrence formula. We show that if the items are not so small compared to the dimensions of the bin, then these algorithms require polynomial time. Using these algorithms we solved all instances of the RK problem found at the OR-LIBRARY, including one for which no optimal solution was known. We also consider the Two-dimensional Cutting Stock problem. We present a column generation based algorithm for this problem that uses the first algorithm above mentioned to generate the columns. We propose two strategies to tackle the residual instances. We also investigate a variant of this problem where the bins have different sizes. At last, we study the Two-dimensional Strip Packing problem. We also present a column generation based algorithm for this problem that uses the second algorithm above mentioned where staged patterns are imposed. In this case we solve instances for two-, three- and four-staged patterns. We report on some computational experiments with the various algorithms we propose in this paper. The results indicate that these algorithms seem to be suitable for solving real-world instances. We give a detailed description (a pseudo-code) of all the algorithms presented here, so that the reader may easily implement these algorithms. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The authors` recent classification of trilinear operations includes, among other cases, a fourth family of operations with parameter q epsilon Q boolean OR {infinity}, and weakly commutative and weakly anticommutative operations. These operations satisfy polynomial identities in degree 3 and further identities in degree 5. For each operation, using the row canonical form of the expansion matrix E to find the identities in degree 5 gives extremely complicated results. We use lattice basis reduction to simplify these identities: we compute the Hermite normal form H of E(t), obtain a basis of the nullspace lattice from the last rows of a matrix U for which UE(t) = H, and then use the LLL algorithm to reduce the basis. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Let L be a function field over the rationals and let D denote the skew field of fractions of L[t; sigma], the skew polynomial ring in t, over L, with automorphism sigma. We prove that the multiplicative group D(x) of D contains a free noncyclic subgroup.
Resumo:
We simplify the results of Bremner and Hentzel [J. Algebra 231 (2000) 387-405] on polynomial identities of degree 9 in two variables satisfied by the ternary cyclic sum [a, b, c] abc + bca + cab in every totally associative ternary algebra. We also obtain new identities of degree 9 in three variables which do not follow from the identities in two variables. Our results depend on (i) the LLL algorithm for lattice basis reduction, and (ii) linearization operators in the group algebra of the symmetric group which permit efficient computation of the representation matrices for a non-linear identity. Our computational methods can be applied to polynomial identities for other algebraic structures.
Resumo:
We investigate polynomial identities on an alternative loop algebra and group identities on its (Moufang) unit loop. An alternative loop ring always satisfies a polynomial identity, whereas whether or not a unit loop satisfies a group identity depends on factors such as characteristic and centrality of certain kinds of idempotents.
Resumo:
We prove that a polar orthogonal representation of a real reductive algebraic group has the same closed orbits as the isotropy representation of a pseudo-Riemannian symmetric space. We also develop a partial structural theory of polar orthogonal representations of real reductive algebraic groups which slightly generalizes some results of the structural theory of real reductive Lie algebras. (c) 2008 Elsevier Inc. All rights reserved.