Foliations and polynomial diffeomorphisms of R(3)


Autoria(s): GUTIERREZ, Carlos; MAQUERA, Carlos
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

Let Y = (f, g, h): R(3) -> R(3) be a C(2) map and let Spec(Y) denote the set of eigenvalues of the derivative DY(p), when p varies in R(3). We begin proving that if, for some epsilon > 0, Spec(Y) boolean AND (-epsilon, epsilon) = empty set, then the foliation F(k), with k is an element of {f, g, h}, made up by the level surfaces {k = constant}, consists just of planes. As a consequence, we prove a bijectivity result related to the three-dimensional case of Jelonek`s Jacobian Conjecture for polynomial maps of R(n).

CNPq-Brazil[306992/2003-5]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

FAPESP-Brazil[03/03107-9]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Identificador

MATHEMATISCHE ZEITSCHRIFT, NEW YORK, v.262, n.3, p.613-626, 2009

0025-5874

http://producao.usp.br/handle/BDPI/28847

10.1007/s00209-008-0393-7

http://dx.doi.org/10.1007/s00209-008-0393-7

Idioma(s)

eng

Publicador

SPRINGER

NEW YORK

Relação

Mathematische Zeitschrift

Direitos

closedAccess

Copyright SPRINGER

Palavras-Chave #Three dimensional vector field #Global injectivity #Foliation #GLOBAL ASYMPTOTIC STABILITY #JACOBIAN CONJECTURE #INJECTIVITY #MAPS #MAPPINGS #PLANE #Mathematics
Tipo

article

original article

publishedVersion