Foliations and polynomial diffeomorphisms of R(3)
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
Let Y = (f, g, h): R(3) -> R(3) be a C(2) map and let Spec(Y) denote the set of eigenvalues of the derivative DY(p), when p varies in R(3). We begin proving that if, for some epsilon > 0, Spec(Y) boolean AND (-epsilon, epsilon) = empty set, then the foliation F(k), with k is an element of {f, g, h}, made up by the level surfaces {k = constant}, consists just of planes. As a consequence, we prove a bijectivity result related to the three-dimensional case of Jelonek`s Jacobian Conjecture for polynomial maps of R(n). CNPq-Brazil[306992/2003-5] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) FAPESP-Brazil[03/03107-9] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) |
Identificador |
MATHEMATISCHE ZEITSCHRIFT, NEW YORK, v.262, n.3, p.613-626, 2009 0025-5874 http://producao.usp.br/handle/BDPI/28847 10.1007/s00209-008-0393-7 |
Idioma(s) |
eng |
Publicador |
SPRINGER NEW YORK |
Relação |
Mathematische Zeitschrift |
Direitos |
closedAccess Copyright SPRINGER |
Palavras-Chave | #Three dimensional vector field #Global injectivity #Foliation #GLOBAL ASYMPTOTIC STABILITY #JACOBIAN CONJECTURE #INJECTIVITY #MAPS #MAPPINGS #PLANE #Mathematics |
Tipo |
article original article publishedVersion |