The univalent polynomial of Suffridge as a summability kernel


Autoria(s): BERTONI, Vanessa
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2008

Resumo

A positive summability trigonometric kernel {K(n)(theta)}(infinity)(n=1) is generated through a sequence of univalent polynomials constructed by Suffridge. We prove that the convolution {K(n) * f} approximates every continuous 2 pi-periodic function f with the rate omega(f, 1/n), where omega(f, delta) denotes the modulus of continuity, and this provides a new proof of the classical Jackson`s theorem. Despite that it turns out that K(n)(theta) coincide with positive cosine polynomials generated by Fejer, our proof differs from others known in the literature.

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Brazilian Science Foundation FAPESP[03/10469-4]

Identificador

COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, LONDON, v.53, n.5, p.401-409, 2008

1747-6933

http://producao.usp.br/handle/BDPI/28877

10.1080/17476930701489590

http://dx.doi.org/10.1080/17476930701489590

Idioma(s)

eng

Publicador

TAYLOR & FRANCIS LTD

LONDON

Relação

Complex Variables and Elliptic Equations

Direitos

closedAccess

Copyright TAYLOR & FRANCIS LTD

Palavras-Chave #Univalent polynomial #Positive summability kernel #Jackson`s theorem #Mathematics
Tipo

article

original article

publishedVersion