496 resultados para Opérateur de Laplace-Beltrami
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Voltages and currents in the transmission line are described by differential equations that are difficult to solve due soil and skin effect that has to be considered for accurate results, but it increases their complexity. Therefore there are some models to study the voltages and currents along in transmission line. The distributed parameters model that transforms the equations in time domain to the frequency domain and once the solutions are obtained, they are converted to time domain using the Inverse Laplace Transform using numerical methods. Another model is named lumped parameters model and it considers the transmission line represented by a pi-circuit cascade and the currents and voltages are described by state equations. In the simulations using the lumped parameters model, it can be observed the presence of spurious oscillations that are independent of the quantity of pi-circuits used and do not represent the real value of the transient. In this work will be projected a passive low-pass filter directly inserted in the lumped parameters model to reduce the spurious oscillations in the simulations, making this model more accurate and reliable for studying the electromagnetic transients in power systems.
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper proposes a drain current model for triple-gate n-type junctionless nanowire transistors. The model is based on the solution of the Poisson equation. First, the 2-D Poisson equation is used to obtain the effective surface potential for long-channel devices, which is used to calculate the charge density along the channel and the drain current. The solution of the 3-D Laplace equation is added to the 2-D model in order to account for the short-channel effects. The proposed model is validated using 3-D TCAD simulations where the drain current and its derivatives, the potential, and the charge density have been compared, showing a good agreement for all parameters. Experimental data of short- channel devices down to 30 nm at different temperatures have been also used to validate the model.
Resumo:
We present a method of generation of exact and explicit forms of one-sided, heavy-tailed Levy stable probability distributions g(alpha)(x), 0 <= x < infinity, 0 < alpha < 1. We demonstrate that the knowledge of one such a distribution g a ( x) suffices to obtain exactly g(alpha)p ( x), p = 2, 3, .... Similarly, from known g(alpha)(x) and g(beta)(x), 0 < alpha, beta < 1, we obtain g(alpha beta)( x). The method is based on the construction of the integral operator, called Levy transform, which implements the above operations. For a rational, alpha = l/k with l < k, we reproduce in this manner many of the recently obtained exact results for g(l/k)(x). This approach can be also recast as an application of the Efros theorem for generalized Laplace convolutions. It relies solely on efficient definite integration. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4709443]
Resumo:
We estimate the masses of the 1(--) heavy four-quark and molecule states by combining exponential Laplace (LSR) and finite energy (FESR) sum rules known perturbatively to lowest order (LO) in alpha(s) but including non-perturbative terms up to the complete dimension-six condensate contributions. This approach allows to fix more precisely the value of the QCD continuum threshold (often taken ad hoc) at which the optimal result is extracted. We use double ratio of sum rules (DRSR) for determining the SU(3) breakings terms. We also study the effects of the heavy quark mass definitions on these LO results. The SU(3) mass-splittings of about (50-110) MeV and the ones of about (250-300) MeV between the lowest ground states and their 1st radial excitations are (almost) heavy-flavor independent. The mass predictions summarized in Table 4 are compared with the ones in the literature (when available) and with the three Y-c(4260, 4360, 4660) and Y-b(10890) 1(--) experimental candidates. We conclude (to this order approximation) that the lowest observed state cannot be a pure 1(--) four-quark nor a pure molecule but may result from their mixings. We extend the above analyzes to the 0(++) four-quark and molecule states which are about (0.5-1) GeV heavier than the corresponding 1(--) states, while the splittings between the 0(++) lowest ground state and the 1st radial excitation is about (300-500) MeV. We complete the analysis by estimating the decay constants of the 1(--) and 0(++) four-quark states which are tiny and which exhibit a 1/M-Q behavior. Our predictions can be further tested using some alternative non-perturbative approaches or/and at LHCb and some other hadron factories. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
La tesi presenta il criterio di regolarità di Wiener dell’ambito classico dell’operatore di Laplace ed in seguito alcune nozioni di teoria del potenziale e la dimostrazione del criterio nel caso dell’operatore del calore; in questa seconda sezione viene dedicata particolare attenzione alle formule di media e ad una diseguaglianza forte di Harnack, che risultano fondamentali nella trattazione dell’argomento centrale.
Resumo:
In dieser Arbeit wird eine Klasse von stochastischen Prozessen untersucht, die eine abstrakte Verzweigungseigenschaft besitzen. Die betrachteten Prozesse sind homogene Markov-Prozesse in stetiger Zeit mit Zuständen im mehrdimensionalen reellen Raum und dessen Ein-Punkt-Kompaktifizierung. Ausgehend von Minimalforderungen an die zugehörige Übergangsfunktion wird eine vollständige Charakterisierung der endlichdimensionalen Verteilungen mehrdimensionaler kontinuierlicher Verzweigungsprozesse vorgenommen. Mit Hilfe eines erweiterten Laplace-Kalküls wird gezeigt, dass jeder solche Prozess durch eine bestimmte spektral positive unendlich teilbare Verteilung eindeutig bestimmt ist. Umgekehrt wird nachgewiesen, dass zu jeder solchen unendlich teilbaren Verteilung ein zugehöriger Verzweigungsprozess konstruiert werden kann. Mit Hilfe der allgemeinen Theorie Markovscher Operatorhalbgruppen wird sichergestellt, dass jeder mehrdimensionale kontinuierliche Verzweigungsprozess eine Version mit Pfaden im Raum der cadlag-Funktionen besitzt. Ferner kann die (funktionale) schwache Konvergenz der Prozesse auf die vage Konvergenz der zugehörigen Charakterisierungen zurückgeführt werden. Hieraus folgen allgemeine Approximations- und Konvergenzsätze für die betrachtete Klasse von Prozessen. Diese allgemeinen Resultate werden auf die Unterklasse der sich verzweigenden Diffusionen angewendet. Es wird gezeigt, dass für diese Prozesse stets eine Version mit stetigen Pfaden existiert. Schließlich wird die allgemeinste Form der Fellerschen Diffusionsapproximation für mehrtypige Galton-Watson-Prozesse bewiesen.
Resumo:
In der vorliegenden Arbeit wird die Faktorisierungsmethode zur Erkennung von Inhomogenitäten der Leitfähigkeit in der elektrischen Impedanztomographie auf unbeschränkten Gebieten - speziell der Halbebene bzw. dem Halbraum - untersucht. Als Lösungsräume für das direkte Problem, d.h. die Bestimmung des elektrischen Potentials zu vorgegebener Leitfähigkeit und zu vorgegebenem Randstrom, führen wir gewichtete Sobolev-Räume ein. In diesen wird die Existenz von schwachen Lösungen des direkten Problems gezeigt und die Gültigkeit einer Integraldarstellung für die Lösung der Laplace-Gleichung, die man bei homogener Leitfähigkeit erhält, bewiesen. Mittels der Faktorisierungsmethode geben wir eine explizite Charakterisierung von Einschlüssen an, die gegenüber dem Hintergrund eine sprunghaft erhöhte oder erniedrigte Leitfähigkeit haben. Damit ist zugleich für diese Klasse von Leitfähigkeiten die eindeutige Rekonstruierbarkeit der Einschlüsse bei Kenntnis der lokalen Neumann-Dirichlet-Abbildung gezeigt. Die mittels der Faktorisierungsmethode erhaltene Charakterisierung der Einschlüsse haben wir in ein numerisches Verfahren umgesetzt und sowohl im zwei- als auch im dreidimensionalen Fall mit simulierten, teilweise gestörten Daten getestet. Im Gegensatz zu anderen bekannten Rekonstruktionsverfahren benötigt das hier vorgestellte keine Vorabinformation über Anzahl und Form der Einschlüsse und hat als nicht-iteratives Verfahren einen vergleichsweise geringen Rechenaufwand.
Resumo:
The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.
Resumo:
Die zuverlässige Berechnung von quantitativen Parametern der Lungenventilation ist für ein Verständnis des Verhaltens der Lunge und insbesondere für die Diagnostik von Lungenerkrankungen von großer Bedeutung. Nur durch quantitative Parameter sind verlässliche und reproduzierbare diagnostische Aussagen über den Gesundheitszustand der Lunge möglich. Im Rahmen dieser Arbeit wurden neue quantitative Verfahren zur Erfassung der Lungenventilation basierend auf der dynamischen Computer- (CT) und Magnetresonanztomographie (MRT) entwickelt. Im ersten Teil dieser Arbeit wurde die Frage untersucht, ob das Aufblähen der Lunge in gesunden Schweinelungen und Lungen mit Akutem Lungenversagen (ARDS) durch einzelne, diskrete Zeitkonstanten beschrieben werden kann, oder ob kontinuierliche Verteilungen von Zeitkonstanten die Realität besser beschreiben. Hierzu wurden Serien dynamischer CT-Aufnahmen während definierter Beatmungsmanöver (Drucksprünge) aufgenommen und anschließend aus den Messdaten mittels inverser Laplace-Transformation die zugehörigen Verteilungen der Zeitkonstanten berechnet. Um die Qualität der Ergebnisse zu analysieren, wurde der Algorithmus im Rahmen von Simulationsrechnungen systematisch untersucht und anschließend in-vivo an gesunden und ARDS-Schweinelungen eingesetzt. Während in den gesunden Lungen mono- und biexponentielle Verteilungen bestimmt wurden, waren in den ARDS-Lungen Verteilungen um zwei dominante Zeitkonstanten notwendig, um die gemessenen Daten auf der Basis des verwendeten Modells verlässlich zu beschreiben. Es wurden sowohl diskrete als auch kontinuierliche Verteilungen gefunden. Die CT liefert Informationen über das solide Lungengewebe, während die MRT von hyperpolarisiertem 3He in der Lage ist, direkt das eingeatmete Gas abzubilden. Im zweiten Teil der Arbeit wurde zeitlich hochaufgelöst das Einströmen eines 3He-Bolus in die Lunge erfasst. Über eine Entfaltungsanalyse wurde anschließend das Einströmverhalten unter Idealbedingungen (unendlich kurzer 3He-Bolus), also die Gewebeantwortfunktion, berechnet und so eine Messtechnik-unabhängige Erfassung des Einströmens von 3He in die Lunge ermöglicht. Zentrale Fragestellung war hier, wie schnell das Gas in die Lunge einströmt. Im Rahmen von Simulationsrechnungen wurde das Verhalten eines Entfaltungsalgorithmus (basierend auf B-Spline Repräsentationen) systematisch analysiert. Zusätzlich wurde ein iteratives Entfaltungsverfahren eingesetzt. Aus zeitlich hochaufgelösten Messungen (7ms) an einer gesunden und einer ARDS-Schweinelunge konnte erstmals nachgewiesen werden, dass das Einströmen in-vivo in weniger als 0,1s geschieht. Die Ergebnisse zeigen Zeitkonstanten im Bereich von 4ms–50ms, wobei zwischen der gesunden Lungen und der ARDS-Lunge deutliche Unterschiede beobachtet wurden. Zusammenfassend ermöglichen daher die in dieser Arbeit vorgestellten Algorithmen eine objektivere Bestimmung quantitativer Parameter der Lungenventilation. Dies ist für die eindeutige Beschreibung ventilatorischer Vorgänge in der Lunge und somit für die Lungendiagnostik unerlässlich. Damit stehen quantitative Methoden für die Lungenfunktionsdiagnostik zur Verfügung, deren diagnostische Relevanz im Rahmen wissenschaftlicher und klinischer Studien untersucht werden kann.
Resumo:
The present thesis is concerned with certain aspects of differential and pseudodifferential operators on infinite dimensional spaces. We aim to generalize classical operator theoretical concepts of pseudodifferential operators on finite dimensional spaces to the infinite dimensional case. At first we summarize some facts about the canonical Gaussian measures on infinite dimensional Hilbert space riggings. Considering the naturally unitary group actions in $L^2(H_-,gamma)$ given by weighted shifts and multiplication with $e^{iSkp{t}{cdot}_0}$ we obtain an unitary equivalence $F$ between them. In this sense $F$ can be considered as an abstract Fourier transform. We show that $F$ coincides with the Fourier-Wiener transform. Using the Fourier-Wiener transform we define pseudodifferential operators in Weyl- and Kohn-Nirenberg form on our Hilbert space rigging. In the case of this Gaussian measure $gamma$ we discuss several possible Laplacians, at first the Ornstein-Uhlenbeck operator and then pseudo-differential operators with negative definite symbol. In the second case, these operators are generators of $L^2_gamma$-sub-Markovian semi-groups and $L^2_gamma$-Dirichlet-forms. In 1992 Gramsch, Ueberberg and Wagner described a construction of generalized Hörmander classes by commutator methods. Following this concept and the classical finite dimensional description of $Psi_{ro,delta}^0$ ($0leqdeltaleqroleq 1$, $delta< 1$) in the $C^*$-algebra $L(L^2)$ by Beals and Cordes we construct in both cases generalized Hörmander classes, which are $Psi^*$-algebras. These classes act on a scale of Sobolev spaces, generated by our Laplacian. In the case of the Ornstein-Uhlenbeck operator, we prove that a large class of continuous pseudodifferential operators considered by Albeverio and Dalecky in 1998 is contained in our generalized Hörmander class. Furthermore, in the case of a Laplacian with negative definite symbol, we develop a symbolic calculus for our operators. We show some Fredholm-criteria for them and prove that these Fredholm-operators are hypoelliptic. Moreover, in the finite dimensional case, using the Gaussian-measure instead of the Lebesgue-measure the index of these Fredholm operators is still given by Fedosov's formula. Considering an infinite dimensional Heisenberg group rigging we discuss the connection of some representations of the Heisenberg group to pseudo-differential operators on infinite dimensional spaces. We use this connections to calculate the spectrum of pseudodifferential operators and to construct generalized Hörmander classes given by smooth elements which are spectrally invariant in $L^2(H_-,gamma)$. Finally, given a topological space $X$ with Borel measure $mu$, a locally compact group $G$ and a representation $B$ of $G$ in the group of all homeomorphisms of $X$, we construct a Borel measure $mu_s$ on $X$ which is invariant under $B(G)$.