790 resultados para Learning techniques


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impulse response of wireless channels between the N-t transmit and N-r receive antennas of a MIMO-OFDM system are group approximately sparse (ga-sparse), i.e., NtNt the channels have a small number of significant paths relative to the channel delay spread and the time-lags of the significant paths between transmit and receive antenna pairs coincide. Often, wireless channels are also group approximately cluster-sparse (gac-sparse), i.e., every ga-sparse channel consists of clusters, where a few clusters have all strong components while most clusters have all weak components. In this paper, we cast the problem of estimating the ga-sparse and gac-sparse block-fading and time-varying channels in the sparse Bayesian learning (SBL) framework and propose a bouquet of novel algorithms for pilot-based channel estimation, and joint channel estimation and data detection, in MIMO-OFDM systems. The proposed algorithms are capable of estimating the sparse wireless channels even when the measurement matrix is only partially known. Further, we employ a first-order autoregressive modeling of the temporal variation of the ga-sparse and gac-sparse channels and propose a recursive Kalman filtering and smoothing (KFS) technique for joint channel estimation, tracking, and data detection. We also propose novel, parallel-implementation based, low-complexity techniques for estimating gac-sparse channels. Monte Carlo simulations illustrate the benefit of exploiting the gac-sparse structure in the wireless channel in terms of the mean square error (MSE) and coded bit error rate (BER) performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-dimensional (3-D) full-wave electromagnetic simulation using method of moments (MoM) under the framework of fast solver algorithms like fast multipole method (FMM) is often bottlenecked by the speed of convergence of the Krylov-subspace-based iterative process. This is primarily because the electric field integral equation (EFIE) matrix, even with cutting-edge preconditioning techniques, often exhibits bad spectral properties arising from frequency or geometry-based ill-conditioning, which render iterative solvers slow to converge or stagnate occasionally. In this communication, a novel technique to expedite the convergence of MoMmatrix solution at a specific frequency is proposed, by extracting and applying Eigen-vectors from a previously solved neighboring frequency in an augmented generalized minimum residual (AGMRES) iterative framework. This technique can be applied in unison with any preconditioner. Numerical results demonstrate up to 40% speed-up in convergence using the proposed Eigen-AGMRES method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fingerprints are used for identification in forensics and are classified into Manual and Automatic. Automatic fingerprint identification system is classified into Latent and Exemplar. A novel Exemplar technique of Fingerprint Image Verification using Dictionary Learning (FIVDL) is proposed to improve the performance of low quality fingerprints, where Dictionary learning method reduces the time complexity by using block processing instead of pixel processing. The dynamic range of an image is adjusted by using Successive Mean Quantization Transform (SMQT) technique and the frequency domain noise is reduced using spectral frequency Histogram Equalization. Then, an adaptive nonlinear dynamic range adjustment technique is utilized to determine the local spectral features on corresponding fingerprint ridge frequency and orientation. The dictionary is constructed using spatial fundamental frequency that is determined from the spectral features. These dictionaries help in removing the spurious noise present in fingerprints and reduce the time complexity by using block processing instead of pixel processing. Further, dictionaries are used to reconstruct the image for matching. The proposed FIVDL is verified on FVC database sets and Experimental result shows an improvement over the state-of-the-art techniques. (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a time when Technology Supported Learning Systems are being widely used, there is a lack of tools that allows their development in an automatic or semi-automatic way. Technology Supported Learning Systems require an appropriate Domain Module, ie. the pedagogical representation of the domain to be mastered, in order to be effective. However, content authoring is a time and effort consuming task, therefore, efforts in automatising the Domain Module acquisition are necessary.Traditionally, textbooks have been used as the main mechanism to maintain and transmit the knowledge of a certain subject or domain. Textbooks have been authored by domain experts who have organised the contents in a means that facilitate understanding and learning, considering pedagogical issues.Given that textbooks are appropriate sources of information, they can be used to facilitate the development of the Domain Module allowing the identification of the topics to be mastered and the pedagogical relationships among them, as well as the extraction of Learning Objects, ie. meaningful fragments of the textbook with educational purpose.Consequently, in this work DOM-Sortze, a framework for the semi-automatic construction of Domain Modules from electronic textbooks, has been developed. DOM-Sortze uses NLP techniques, heuristic reasoning and ontologies to fulfill its work. DOM-Sortze has been designed and developed with the aim of automatising the development of the Domain Module, regardless of the subject, promoting the knowledge reuse and facilitating the collaboration of the users during the process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA microarray, or DNA chip, is a technology that allows us to obtain the expression level of many genes in a single experiment. The fact that numerical expression values can be easily obtained gives us the possibility to use multiple statistical techniques of data analysis. In this project microarray data is obtained from Gene Expression Omnibus, the repository of National Center for Biotechnology Information (NCBI). Then, the noise is removed and data is normalized, also we use hypothesis tests to find the most relevant genes that may be involved in a disease and use machine learning methods like KNN, Random Forest or Kmeans. For performing the analysis we use Bioconductor, packages in R for the analysis of biological data, and we conduct a case study in Alzheimer disease. The complete code can be found in https://github.com/alberto-poncelas/ bioc-alzheimer

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The author uses clicker technology to incorporate polling and multiple choice question techniques into library instruction classes. Clickers can be used to give a keener understanding of how many students grasp the concepts presented in a specific class session. Typically, a student that aces a definition-type question will fail to answer an application-type question correctly. Immediate, electronic feedback helps to calibrate teaching approaches and gather data about learning outcomes. This presentation will analyze learning outcomes specific to scientific disciplines, and demonstrate the usefulness of clickers to engage and sustain student learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The connections between convexity and submodularity are explored, for purposes of minimizing and learning submodular set functions.

First, we develop a novel method for minimizing a particular class of submodular functions, which can be expressed as a sum of concave functions composed with modular functions. The basic algorithm uses an accelerated first order method applied to a smoothed version of its convex extension. The smoothing algorithm is particularly novel as it allows us to treat general concave potentials without needing to construct a piecewise linear approximation as with graph-based techniques.

Second, we derive the general conditions under which it is possible to find a minimizer of a submodular function via a convex problem. This provides a framework for developing submodular minimization algorithms. The framework is then used to develop several algorithms that can be run in a distributed fashion. This is particularly useful for applications where the submodular objective function consists of a sum of many terms, each term dependent on a small part of a large data set.

Lastly, we approach the problem of learning set functions from an unorthodox perspective---sparse reconstruction. We demonstrate an explicit connection between the problem of learning set functions from random evaluations and that of sparse signals. Based on the observation that the Fourier transform for set functions satisfies exactly the conditions needed for sparse reconstruction algorithms to work, we examine some different function classes under which uniform reconstruction is possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study of emotions in human-computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The partially observable Markov decision process (POMDP) provides a popular framework for modelling spoken dialogue. This paper describes how the expectation propagation algorithm (EP) can be used to learn the parameters of the POMDP user model. Various special probability factors applicable to this task are presented, which allow the parameters be to learned when the structure of the dialogue is complex. No annotations, neither the true dialogue state nor the true semantics of user utterances, are required. Parameters optimised using the proposed techniques are shown to improve the performance of both offline transcription experiments as well as simulated dialogue management performance. ©2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents a novel algorithm for learning parameters in statistical dialogue systems which are modeled as Partially Observable Markov Decision Processes (POMDPs). The three main components of a POMDP dialogue manager are a dialogue model representing dialogue state information; a policy that selects the system's responses based on the inferred state; and a reward function that specifies the desired behavior of the system. Ideally both the model parameters and the policy would be designed to maximize the cumulative reward. However, while there are many techniques available for learning the optimal policy, no good ways of learning the optimal model parameters that scale to real-world dialogue systems have been found yet. The presented algorithm, called the Natural Actor and Belief Critic (NABC), is a policy gradient method that offers a solution to this problem. Based on observed rewards, the algorithm estimates the natural gradient of the expected cumulative reward. The resulting gradient is then used to adapt both the prior distribution of the dialogue model parameters and the policy parameters. In addition, the article presents a variant of the NABC algorithm, called the Natural Belief Critic (NBC), which assumes that the policy is fixed and only the model parameters need to be estimated. The algorithms are evaluated on a spoken dialogue system in the tourist information domain. The experiments show that model parameters estimated to maximize the expected cumulative reward result in significantly improved performance compared to the baseline hand-crafted model parameters. The algorithms are also compared to optimization techniques using plain gradients and state-of-the-art random search algorithms. In all cases, the algorithms based on the natural gradient work significantly better. © 2011 ACM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reinforcement techniques have been successfully used to maximise the expected cumulative reward of statistical dialogue systems. Typically, reinforcement learning is used to estimate the parameters of a dialogue policy which selects the system's responses based on the inferred dialogue state. However, the inference of the dialogue state itself depends on a dialogue model which describes the expected behaviour of a user when interacting with the system. Ideally the parameters of this dialogue model should be also optimised to maximise the expected cumulative reward. This article presents two novel reinforcement algorithms for learning the parameters of a dialogue model. First, the Natural Belief Critic algorithm is designed to optimise the model parameters while the policy is kept fixed. This algorithm is suitable, for example, in systems using a handcrafted policy, perhaps prescribed by other design considerations. Second, the Natural Actor and Belief Critic algorithm jointly optimises both the model and the policy parameters. The algorithms are evaluated on a statistical dialogue system modelled as a Partially Observable Markov Decision Process in a tourist information domain. The evaluation is performed with a user simulator and with real users. The experiments indicate that model parameters estimated to maximise the expected reward function provide improved performance compared to the baseline handcrafted parameters. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning an input-output mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multi-dimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, this form of learning is closely related to classical approximation techniques, such as generalized splines and regularization theory. This paper considers the problems of an exact representation and, in more detail, of the approximation of linear and nolinear mappings in terms of simpler functions of fewer variables. Kolmogorov's theorem concerning the representation of functions of several variables in terms of functions of one variable turns out to be almost irrelevant in the context of networks for learning. We develop a theoretical framework for approximation based on regularization techniques that leads to a class of three-layer networks that we call Generalized Radial Basis Functions (GRBF), since they are mathematically related to the well-known Radial Basis Functions, mainly used for strict interpolation tasks. GRBF networks are not only equivalent to generalized splines, but are also closely related to pattern recognition methods such as Parzen windows and potential functions and to several neural network algorithms, such as Kanerva's associative memory, backpropagation and Kohonen's topology preserving map. They also have an interesting interpretation in terms of prototypes that are synthesized and optimally combined during the learning stage. The paper introduces several extensions and applications of the technique and discusses intriguing analogies with neurobiological data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

R. Daly, Q. Shen and S. Aitken. Using ant colony optimisation in learning Bayesian network equivalence classes. Proceedings of the 2006 UK Workshop on Computational Intelligence, pages 111-118.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Training data for supervised learning neural networks can be clustered such that the input/output pairs in each cluster are redundant. Redundant training data can adversely affect training time. In this paper we apply two clustering algorithms, ART2 -A and the Generalized Equality Classifier, to identify training data clusters and thus reduce the training data and training time. The approach is demonstrated for a high dimensional nonlinear continuous time mapping. The demonstration shows six-fold decrease in training time at little or no loss of accuracy in the handling of evaluation data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethnomathematical research, together with digital technologies (WebQuest) and Drama-in- Education (DiE) techniques, can create a fruitful learning environment in a mathematics classroom—a hybrid/third space—enabling increased student participation and higher levels of cognitive engagement. This article examines how ethnomathematical ideas processed within the experiential environment established by the Drama-in-Education techniques challenged students‘ conceptions of the nature of mathematics, the ways in which students engaged with mathematics learning using mind and body, and the ̳dialogue‘ that was developed between the Discourse situated in a particular practice and the classroom Discourse of mathematics teaching. The analysis focuses on an interdisciplinary project based on an ethnomathematical study of a designing tradition carried out by the researchers themselves, involving a search for informal mathematics and the connections with context and culture; 10th grade students in a public school in Athens were introduced to the mathematics content via an original WebQuest based on this previous ethnomathematical study; Geometry content was further introduced and mediated using the Drama-in-Education (DiE) techniques. Students contributed in an unfolding dialogue between formal and informal knowledge, renegotiating both mathematical concepts and their perception of mathematics as a discipline.