2 resultados para Learning techniques

em CaltechTHESIS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the first part of this thesis we search for beyond the Standard Model physics through the search for anomalous production of the Higgs boson using the razor kinematic variables. We search for anomalous Higgs boson production using proton-proton collisions at center of mass energy √s=8 TeV collected by the Compact Muon Solenoid experiment at the Large Hadron Collider corresponding to an integrated luminosity of 19.8 fb-1.

In the second part we present a novel method for using a quantum annealer to train a classifier to recognize events containing a Higgs boson decaying to two photons. We train that classifier using simulated proton-proton collisions at √s=8 TeV producing either a Standard Model Higgs boson decaying to two photons or a non-resonant Standard Model process that produces a two photon final state.

The production mechanisms of the Higgs boson are precisely predicted by the Standard Model based on its association with the mechanism of electroweak symmetry breaking. We measure the yield of Higgs bosons decaying to two photons in kinematic regions predicted to have very little contribution from a Standard Model Higgs boson and search for an excess of events, which would be evidence of either non-standard production or non-standard properties of the Higgs boson. We divide the events into disjoint categories based on kinematic properties and the presence of additional b-quarks produced in the collisions. In each of these disjoint categories, we use the razor kinematic variables to characterize events with topological configurations incompatible with typical configurations found from standard model production of the Higgs boson.

We observe an excess of events with di-photon invariant mass compatible with the Higgs boson mass and localized in a small region of the razor plane. We observe 5 events with a predicted background of 0.54 ± 0.28, which observation has a p-value of 10-3 and a local significance of 3.35σ. This background prediction comes from 0.48 predicted non-resonant background events and 0.07 predicted SM higgs boson events. We proceed to investigate the properties of this excess, finding that it provides a very compelling peak in the di-photon invariant mass distribution and is physically separated in the razor plane from predicted background. Using another method of measuring the background and significance of the excess, we find a 2.5σ deviation from the Standard Model hypothesis over a broader range of the razor plane.

In the second part of the thesis we transform the problem of training a classifier to distinguish events with a Higgs boson decaying to two photons from events with other sources of photon pairs into the Hamiltonian of a spin system, the ground state of which is the best classifier. We then use a quantum annealer to find the ground state of this Hamiltonian and train the classifier. We find that we are able to do this successfully in less than 400 annealing runs for a problem of median difficulty at the largest problem size considered. The networks trained in this manner exhibit good classification performance, competitive with the more complicated machine learning techniques, and are highly resistant to overtraining. We also find that the nature of the training gives access to additional solutions that can be used to improve the classification performance by up to 1.2% in some regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The brain is a network spanning multiple scales from subcellular to macroscopic. In this thesis I present four projects studying brain networks at different levels of abstraction. The first involves determining a functional connectivity network based on neural spike trains and using a graph theoretical method to cluster groups of neurons into putative cell assemblies. In the second project I model neural networks at a microscopic level. Using diferent clustered wiring schemes, I show that almost identical spatiotemporal activity patterns can be observed, demonstrating that there is a broad neuro-architectural basis to attain structured spatiotemporal dynamics. Remarkably, irrespective of the precise topological mechanism, this behavior can be predicted by examining the spectral properties of the synaptic weight matrix. The third project introduces, via two circuit architectures, a new paradigm for feedforward processing in which inhibitory neurons have the complex and pivotal role in governing information flow in cortical network models. Finally, I analyze axonal projections in sleep deprived mice using data collected as part of the Allen Institute's Mesoscopic Connectivity Atlas. After normalizing for experimental variability, the results indicate there is no single explanatory difference in the mesoscale network between control and sleep deprived mice. Using machine learning techniques, however, animal classification could be done at levels significantly above chance. This reveals that intricate changes in connectivity do occur due to chronic sleep deprivation.