871 resultados para Eletric power consumption - Reduction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A compact direct digital frequency synthesizer (DDFS) for system-on-chip implementation of the high precision rubidium atomic frequency standard is developed. For small chip size and low power consumption, the phase to sine mapping data is compressed using sine symmetry technique, sine-phase difference technique, quad line approximation technique,and quantization and error read only memory (QE-ROM) technique. The ROM size is reduced by 98% using these techniques. A compact DDFS chip with 32bit phase storage depth and a 10bit on-chip digital to analog converter has been successfully implemented using a standard 0.35μm CMOS process. The core area of the DDFS is 1.6mm^2. It consumes 167mW at 3.3V,and its spurious free dynamic range is 61dB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rearrangeable nonblocking thermo-optic 4×4 switching matrix,which consists of five 2×2 multimode interference-based Mach-Zehnder interferometer(MMI-MZI) switch elements,is designed and fabricated.The minimum and maximum excess loss for the matrix are 6.6 and 10.4dB,respectively.The crosstalk in the matrix is measured to be between -12 and -19.8dB.The switching speed of the matrix is less than 30μs.The power consumption for the single switch element is about 330mW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon-on-insulator (SOI) technology offers tremendous potential for integration of optoelectronic functionson a silicon wafer. In this letter, a 1 * 1 multimode interference (MMI) Mach-Zender interferometer(MZI) thermo-optic modulator fabricated by wet-etching method is demonstrated. The modulator has anextinction ratio of -11.0 dB, extra loss of -4.9 dB and power consumption of 420 mW. The response timeis less than 30μs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon-on-insulator (SOI) has been recognized as a promising semiconductor starting material for ICs where high speed and low power consumption are desirable, in addition to its unique applications in radiation-hardened circuits. In the present paper, three novel SOI nano-layer structures have been demonstrated. ULTRA-THIN SOI has been fabricated by separation by implantation of oxygen (SIMOX) technique at low oxygen ion energy of 45 keV and implantation dosage of 1.81017/cm2. The formed SOI layer is uniform with thickness of only 60 nm. This layer is of crystalline quality. and the interface between this layer and the buried oxide layer is very sharp, PATTERNED SOI nanostructure is illustrated by source and drain on insulator (DSOI) MOSFETs. The DSOI structure has been formed by selective oxygen ion implantation in SIMOX process. With the patterned SOI technology, the floating-body effect and self-heating effect, which occur in the conventional SOI devices, are significantly suppressed. In order to improve the total-dose irradiation hardness of SOI devices, SILICON ON INSULATING MULTILAYERS (SOIM) nano-structure is proposed. The buried insulating multilayers, which are composed of SiOx and SiNy layers, have been realized by implantation of nitride and oxygen ions into silicon in turn at different ion energies, followed by two steps of high temperature annealing process, respectively, Electric property investigation shows that the hardness to the total-dose irradiation of SOIM is remarkably superior to those of the conventional SIMOX SOI and the Bond-and-Etch-Back SOI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A type of thermo-optic variable optical attenuator based on multimode interference coupler is proposed. The optical field propagation properties of the devices are simulated using finite difference beam propagation method. The propagation loss of the fabricated device is 2-4.2 dB at the wavelength range 1510-1610 nm. The total power consumption is 370 mW and the maximum attenuation is more than 25 dB, which almost can meet the requirements of optical fiber communication systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a need for methodology to warm open-field plots in order to study the likely effects of global warming on ecosystems in the future. Herein, we describe the development of arrays of more powerful and efficient infrared heaters with ceramic heating elements. By tilting the heaters at 45 degrees from horizontal and combining six of them in a hexagonal array, good uniformity of warming was achieved across 3-m-diameter plots. Moreover, there do not appear to be obstacles (other than financial) to scaling to larger plots. The efficiency [eta(h) (%); thermal radiation out per electrical energy in] of these heaters was higher than that of the heaters used in most previous infrared heater experiments and can be described by: eta(h) = 10 + 25exp(-0.17 u), where u is wind speed at 2 m height (m s(-1)). Graphs are presented to estimate operating costs from degrees of warming, two types of plant canopy, and site windiness. Four such arrays were deployed over plots of grass at Haibei, Qinghai, China and another at Cheyenne, Wyoming, USA, along with corresponding reference plots with dummy heaters. Proportional integral derivative systems with infrared thermometers to sense canopy temperatures of the heated and reference plots were used to control the heater outputs. Over month-long periods at both sites, about 75% of canopy temperature observations were within 0.5 degrees C of the set-point temperature differences between heated and reference plots. Electrical power consumption per 3-m-diameter plot averaged 58 and 80 kW h day(-1) for Haibei and Cheyenne, respectively. However, the desired temperature differences were set lower at Haibei (1.2 degrees C daytime, 1.7 degrees C night) than Cheyenne (1.5 degrees C daytime, 3.0 degrees C night), and Cheyenne is a windier site. Thus, we conclude that these hexagonal arrays of ceramic infrared heaters can be a successful temperature free-air-controlled enhancement (T-FACE) system for warming ecosystem field plots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

工业无线技术是一种本世纪初新兴的、面向设备间信息交互的无线网络技术,适合在恶劣的工业现场环境下使用,具有强抗扰、低功耗、实时通信等技术特征,是对现有无线技术在工业应用方向上的功能扩展和技术创新,并将最终转化为新的无线技术标准。本文介绍我国在工业无线技术方面的研究进展,重点介绍具有自主知识产权的工业无线网络核心技术以及相关国家标准体系的建设情况。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

针对废墟搜救机器人的实际需要和当前监控终端的不足,设计开发了一种新的监控终端。这种监控终端基于OMAP架构,包含了人机界面、遥控、无线通讯、数据处理等功能,实现了对机器人本体的无线操控,并实现了与指挥中心的远程无线连接。由于在功耗与性能之间取得了平衡,这种监控终端减小了体积,提高了便携性。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

针对一种小型的双足爬壁机器人,设计开发了基于DSP2812处理芯片的控制系统.该机器人系统采用双足真空吸盘式结构和用3个电机驱动5个关节的欠驱动结构.双足真空吸盘式结构使其可以在光滑的墙面和天棚行走,又能够在交接面之间完成跨步行走.而欠驱动结构减少了电机的数目,从而减小了机器人的尺寸和降低了机器人的质量和能量消耗,但它也给机器人的控制和运动规划带来了新的挑战.已完成的系统设计包括运动模式设计、关节控制、通信模块设计和吸盘足控制等.实验结果证明了所提出方案的可行性.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

针对远距离声源发射的水声信号微弱、水声接收设备电源能量有限的特点,提出一种功耗小、对无源元件误差灵敏度低、高增益放大的微弱水声信号通用放大电路。系统采用场效应管共源单调谐放大器为前置放大级,由四级级联低功耗运放构成带通滤波放大电路,省去传统的R、C低通网络,实现了对微弱水声信号的高增益放大和海洋背景噪声的归一化处理。通过计算电路网络传递函数极点证明了电路系统的稳定性。海上使用表明系统具有精度高、适应性强、电路稳定性好、功耗小等优点。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

简要介绍6000米AUV的总体结构和主要功能,重点研究AUV深海试验中的无动力下潜试验和载体浮力测量试验,提出三种深海浮力测量方法。根据试验数据,通过调整载体配重,在控制特性不变的情况下,使AUV在水下航行达到能量最优。此方法是一种理论和工程实际相结合的方法,对于其它类型深水AUV试验具有指导意义。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

应用车辆地面力学理论研究滑转率对月球车车轮挂钩牵引力、驱动效率以及功率消耗的影响。建立刚性车轮与松软月壤交互作用的动力学模型。通过实例对月球车车轮驱动动力学特性进行仿真分析。研究结果表明,车轮的挂钩牵引力、驱动效率以及驱动能耗均受到车轮滑转率的制约。存在一个最优的滑转率区间,在此区间内车轮可获得较大的挂钩牵引力、较高的驱动效率以及较低的驱动能耗。求取轮、地相对速度,对月球车车轮的地面摩擦力功率进行了估算。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Routing protocols in wireless sensor networks (WSN) face two main challenges: first, the challenging environments in which WSNs are deployed negatively affect the quality of the routing process. Therefore, routing protocols for WSNs should recognize and react to node failures and packet losses. Second, sensor nodes are battery-powered, which makes power a scarce resource. Routing protocols should optimize power consumption to prolong the lifetime of the WSN. In this paper, we present a new adaptive routing protocol for WSNs, we call it M^2RC. M^2RC has two phases: mesh establishment phase and data forwarding phase. In the first phase, M^2RC establishes the routing state to enable multipath data forwarding. In the second phase, M^2RC forwards data packets from the source to the sink. Targeting hop-by-hop reliability, an M^2RC forwarding node waits for an acknowledgement (ACK) that its packets were correctly received at the next neighbor. Based on this feedback, an M^2RC node applies multiplicative-increase/additive-decrease (MIAD) to control the number of neighbors targeted by its packet broadcast. We simulated M^2RC in the ns-2 simulator and compared it to GRAB, Max-power, and Min-power routing schemes. Our simulations show that M^2RC achieves the highest throughput with at least 10-30% less consumed power per delivered report in scenarios where a certain number of nodes unexpectedly fail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a transport protocol whose goal is to reduce power consumption without compromising delivery requirements of applications. To meet its goal of energy efficiency, our transport protocol (1) contains mechanisms to balance end-to-end vs. local retransmissions; (2) minimizes acknowledgment traffic using receiver regulated rate-based flow control combined with selected acknowledgements and in-network caching of packets; and (3) aggressively seeks to avoid any congestion-based packet loss. Within a recently developed ultra low-power multi-hop wireless network system, extensive simulations and experimental results demonstrate that our transport protocol meets its goal of preserving the energy efficiency of the underlying network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy-efficient communication has recently become a key challenge for both researchers and industries. In this paper, we propose a new model in which a Content Provider and an Internet Service Provider cooperate to reduce the total power consumption. We solve the problem optimally and compare it with a classic formulation, whose aim is to minimize user delay. Results, although preliminary, show that power savings can be huge: up to 71% on real ISP topologies. We also show how the degree of cooperation impacts overall power consumption. Finally, we consider the impact of the Content Provider location on the total power savings.