851 resultados para statistical methods
Resumo:
In the literature on tests of normality, much concern has been expressed over the problems associated with residual-based procedures. Indeed, the specialized tables of critical points which are needed to perform the tests have been derived for the location-scale model; hence reliance on available significance points in the context of regression models may cause size distortions. We propose a general solution to the problem of controlling the size normality tests for the disturbances of standard linear regression, which is based on using the technique of Monte Carlo tests.
Resumo:
This paper addresses the issue of estimating semiparametric time series models specified by their conditional mean and conditional variance. We stress the importance of using joint restrictions on the mean and variance. This leads us to take into account the covariance between the mean and the variance and the variance of the variance, that is, the skewness and kurtosis. We establish the direct links between the usual parametric estimation methods, namely, the QMLE, the GMM and the M-estimation. The ususal univariate QMLE is, under non-normality, less efficient than the optimal GMM estimator. However, the bivariate QMLE based on the dependent variable and its square is as efficient as the optimal GMM one. A Monte Carlo analysis confirms the relevance of our approach, in particular, the importance of skewness.
Resumo:
This paper considers various asymptotic approximations in the near-integrated firstorder autoregressive model with a non-zero initial condition. We first extend the work of Knight and Satchell (1993), who considered the random walk case with a zero initial condition, to derive the expansion of the relevant joint moment generating function in this more general framework. We also consider, as alternative approximations, the stochastic expansion of Phillips (1987c) and the continuous time approximation of Perron (1991). We assess how these alternative methods provide or not an adequate approximation to the finite-sample distribution of the least-squares estimator in a first-order autoregressive model. The results show that, when the initial condition is non-zero, Perron's (1991) continuous time approximation performs very well while the others only offer improvements when the initial condition is zero.
Resumo:
We provide a theoretical framework to explain the empirical finding that the estimated betas are sensitive to the sampling interval even when using continuously compounded returns. We suppose that stock prices have both permanent and transitory components. The permanent component is a standard geometric Brownian motion while the transitory component is a stationary Ornstein-Uhlenbeck process. The discrete time representation of the beta depends on the sampling interval and two components labelled \"permanent and transitory betas\". We show that if no transitory component is present in stock prices, then no sampling interval effect occurs. However, the presence of a transitory component implies that the beta is an increasing (decreasing) function of the sampling interval for more (less) risky assets. In our framework, assets are labelled risky if their \"permanent beta\" is greater than their \"transitory beta\" and vice versa for less risky assets. Simulations show that our theoretical results provide good approximations for the means and standard deviations of estimated betas in small samples. Our results can be perceived as indirect evidence for the presence of a transitory component in stock prices, as proposed by Fama and French (1988) and Poterba and Summers (1988).
Resumo:
This note investigates the adequacy of the finite-sample approximation provided by the Functional Central Limit Theorem (FCLT) when the errors are allowed to be dependent. We compare the distribution of the scaled partial sums of some data with the distribution of the Wiener process to which it converges. Our setup is purposely very simple in that it considers data generated from an ARMA(1,1) process. Yet, this is sufficient to bring out interesting conclusions about the particular elements which cause the approximations to be inadequate in even quite large sample sizes.
Resumo:
The GARCH and Stochastic Volatility paradigms are often brought into conflict as two competitive views of the appropriate conditional variance concept : conditional variance given past values of the same series or conditional variance given a larger past information (including possibly unobservable state variables). The main thesis of this paper is that, since in general the econometrician has no idea about something like a structural level of disaggregation, a well-written volatility model should be specified in such a way that one is always allowed to reduce the information set without invalidating the model. To this respect, the debate between observable past information (in the GARCH spirit) versus unobservable conditioning information (in the state-space spirit) is irrelevant. In this paper, we stress a square-root autoregressive stochastic volatility (SR-SARV) model which remains true to the GARCH paradigm of ARMA dynamics for squared innovations but weakens the GARCH structure in order to obtain required robustness properties with respect to various kinds of aggregation. It is shown that the lack of robustness of the usual GARCH setting is due to two very restrictive assumptions : perfect linear correlation between squared innovations and conditional variance on the one hand and linear relationship between the conditional variance of the future conditional variance and the squared conditional variance on the other hand. By relaxing these assumptions, thanks to a state-space setting, we obtain aggregation results without renouncing to the conditional variance concept (and related leverage effects), as it is the case for the recently suggested weak GARCH model which gets aggregation results by replacing conditional expectations by linear projections on symmetric past innovations. Moreover, unlike the weak GARCH literature, we are able to define multivariate models, including higher order dynamics and risk premiums (in the spirit of GARCH (p,p) and GARCH in mean) and to derive conditional moment restrictions well suited for statistical inference. Finally, we are able to characterize the exact relationships between our SR-SARV models (including higher order dynamics, leverage effect and in-mean effect), usual GARCH models and continuous time stochastic volatility models, so that previous results about aggregation of weak GARCH and continuous time GARCH modeling can be recovered in our framework.
Resumo:
Recent work shows that a low correlation between the instruments and the included variables leads to serious inference problems. We extend the local-to-zero analysis of models with weak instruments to models with estimated instruments and regressors and with higher-order dependence between instruments and disturbances. This makes this framework applicable to linear models with expectation variables that are estimated non-parametrically. Two examples of such models are the risk-return trade-off in finance and the impact of inflation uncertainty on real economic activity. Results show that inference based on Lagrange Multiplier (LM) tests is more robust to weak instruments than Wald-based inference. Using LM confidence intervals leads us to conclude that no statistically significant risk premium is present in returns on the S&P 500 index, excess holding yields between 6-month and 3-month Treasury bills, or in yen-dollar spot returns.
Resumo:
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.
Resumo:
In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.
Resumo:
We study the problem of testing the error distribution in a multivariate linear regression (MLR) model. The tests are functions of appropriately standardized multivariate least squares residuals whose distribution is invariant to the unknown cross-equation error covariance matrix. Empirical multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their expected value under the hypothesized distribution. Special cases considered include testing multivariate normal, Student t; normal mixtures and stable error models. In the Gaussian case, finite-sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution families involving nuisance parameters, confidence sets are derived for the the nuisance parameters and the error distribution. The procedures considered are evaluated in a small simulation experi-ment. Finally, the tests are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995.
Resumo:
We propose an alternate parameterization of stationary regular finite-state Markov chains, and a decomposition of the parameter into time reversible and time irreversible parts. We demonstrate some useful properties of the decomposition, and propose an index for a certain type of time irreversibility. Two empirical examples illustrate the use of the proposed parameter, decomposition and index. One involves observed states; the other, latent states.
Resumo:
McCausland (2004a) describes a new theory of random consumer demand. Theoretically consistent random demand can be represented by a \"regular\" \"L-utility\" function on the consumption set X. The present paper is about Bayesian inference for regular L-utility functions. We express prior and posterior uncertainty in terms of distributions over the indefinite-dimensional parameter set of a flexible functional form. We propose a class of proper priors on the parameter set. The priors are flexible, in the sense that they put positive probability in the neighborhood of any L-utility function that is regular on a large subset bar(X) of X; and regular, in the sense that they assign zero probability to the set of L-utility functions that are irregular on bar(X). We propose methods of Bayesian inference for an environment with indivisible goods, leaving the more difficult case of indefinitely divisible goods for another paper. We analyse individual choice data from a consumer experiment described in Harbaugh et al. (2001).
Resumo:
We introduce a procedure to infer the repeated-game strategies that generate actions in experimental choice data. We apply the technique to set of experiments where human subjects play a repeated Prisoner's Dilemma. The technique suggests that two types of strategies underly the data.
Resumo:
The technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] provides an attractive method of building exact tests from statistics whose finite sample distribution is intractable but can be simulated (provided it does not involve nuisance parameters). We extend this method in two ways: first, by allowing for MC tests based on exchangeable possibly discrete test statistics; second, by generalizing the method to statistics whose null distributions involve nuisance parameters (maximized MC tests, MMC). Simplified asymptotically justified versions of the MMC method are also proposed and it is shown that they provide a simple way of improving standard asymptotics and dealing with nonstandard asymptotics (e.g., unit root asymptotics). Parametric bootstrap tests may be interpreted as a simplified version of the MMC method (without the general validity properties of the latter).
Resumo:
In this paper, we propose exact inference procedures for asset pricing models that can be formulated in the framework of a multivariate linear regression (CAPM), allowing for stable error distributions. The normality assumption on the distribution of stock returns is usually rejected in empirical studies, due to excess kurtosis and asymmetry. To model such data, we propose a comprehensive statistical approach which allows for alternative - possibly asymmetric - heavy tailed distributions without the use of large-sample approximations. The methods suggested are based on Monte Carlo test techniques. Goodness-of-fit tests are formally incorporated to ensure that the error distributions considered are empirically sustainable, from which exact confidence sets for the unknown tail area and asymmetry parameters of the stable error distribution are derived. Tests for the efficiency of the market portfolio (zero intercepts) which explicitly allow for the presence of (unknown) nuisance parameter in the stable error distribution are derived. The methods proposed are applied to monthly returns on 12 portfolios of the New York Stock Exchange over the period 1926-1995 (5 year subperiods). We find that stable possibly skewed distributions provide statistically significant improvement in goodness-of-fit and lead to fewer rejections of the efficiency hypothesis.