Simulation-Based Finite-Sample Normality Tests in Linear Regressions


Autoria(s): Dufour, Jean-Marie; Farhat, Abdeljelil; GARDIOL, Lucien; Khalaf, Lynda
Data(s)

22/09/2006

22/09/2006

1998

Resumo

In the literature on tests of normality, much concern has been expressed over the problems associated with residual-based procedures. Indeed, the specialized tables of critical points which are needed to perform the tests have been derived for the location-scale model; hence reliance on available significance points in the context of regression models may cause size distortions. We propose a general solution to the problem of controlling the size normality tests for the disturbances of standard linear regression, which is based on using the technique of Monte Carlo tests.

Formato

934877 bytes

application/pdf

Identificador

DUFOUR, Jean-Marie, FARHAT, Abdeljelil, GARDIOL, Lucien et KHALAF, Lynda, «Simulation-Based Finite-Sample Normality Tests in Linear Regressions», Cahier de recherche #9811, Département de sciences économiques, Université de Montréal, 1998, 20 pages.

http://hdl.handle.net/1866/460

Relação

Cahier de recherche #9811

Palavras-Chave #[JEL:C10] Mathematical and Quantitative Methods - Econometric and Statistical Methods: General - General #[JEL:C15] Mathematical and Quantitative Methods - Econometric and Statistical Methods: General - Statistical Simulation Methods; Monte Carlo Methods; Bootstrap Methods #[JEL:C52] Mathematical and Quantitative Methods - Econometric Modeling - Model Evaluation and Selection #[JEL:C10] Mathématiques et méthodes quantitatives - Économétrie et méthodes statistiques; généralités - Généralités #[JEL:C15] Mathématiques et méthodes quantitatives - Économétrie et méthodes statistiques; généralités - Méthodes de simulation statistique: la méthode Monte Carlo #[JEL:C52] Mathématiques et méthodes quantitatives - Modélisation économétrique - Évaluation de modèles et tests
Tipo

Article