971 resultados para semiconductor quantum wells
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Naturwissenschaften, Dissertation, 2016
Resumo:
2000 Mathematics Subject Classification: 35Q02, 35Q05, 35Q10, 35B40.
Resumo:
Experimental and theoretical studies regarding noise processes in various kinds of AlGaAs/GaAs heterostructures with a quantum well are reported. The measurement processes, involving a Fast Fourier Transform and analog wave analyzer in the frequency range from 10 Hz to 1 MHz, a computerized data storage and processing system, and cryostat in the temperature range from 78 K to 300 K are described in detail. The current noise spectra are obtained with the “three-point method”, using a Quan-Tech and avalanche noise source for calibration. ^ The properties of both GaAs and AlGaAs materials and field effect transistors, based on the two-dimensional electron gas in the interface quantum well, are discussed. Extensive measurements are performed in three types of heterostructures, viz., Hall structures with a large spacer layer, modulation-doped non-gated FETs, and more standard gated FETs; all structures are grown by MBE techniques. ^ The Hall structures show Lorentzian generation-recombination noise spectra with near temperature independent relaxation times. This noise is attributed to g-r processes in the 2D electron gas. For the TEGFET structures, we observe several Lorentzian g-r noise components which have strongly temperature dependent relaxation times. This noise is attributed to trapping processes in the doped AlGaAs layer. The trap level energies are determined from an Arrhenius plot of log (τT2) versus 1/T as well as from the plateau values. The theory to interpret these measurements and to extract the defect level data is reviewed and further developed. Good agreement with the data is found for all reported devices. ^
Resumo:
The study of III-nitride materials (InN, GaN and AlN) gained huge research momentum after breakthroughs in the production light emitting diodes (LEDs) and laser diodes (LDs) over the past two decades. Last year, the Nobel Prize in Physics was awarded jointly to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura for inventing a new energy efficient and environmental friendly light source: blue light-emitting diode (LED) from III-nitride semiconductors in the early 1990s. Nowadays, III-nitride materials not only play an increasingly important role in the lighting technology, but also become prospective candidates in other areas, for example, the high frequency (RF) high electron mobility transistor (HEMT) and photovoltaics. These devices require the growth of high quality III-nitride films, which can be prepared using metal organic vapour phase epitaxy (MOVPE). The main aim of my thesis is to study and develop the growth of III-nitride films, including AlN, u-AlGaN, Si-doped AlGaN, and InAlN, serving as sample wafers for fabrication of ultraviolet (UV) LEDs, in order to replace the conventional bulky, expensive and environmentally harmful mercury lamp as new UV light sources. For application to UV LEDs, reducing the threading dislocation density (TDD) in AlN epilayers on sapphire substrates is a key parameter for achieving high-efficiency AlGaNbased UV emitters. In Chapter 4, after careful and systematic optimisation, a working set of conditions, the screw and edge type dislocation density in the AlN were reduced to around 2.2×108 cm-2 and 1.3×109 cm-2 , respectively, using an optimized three-step process, as estimated by TEM. An atomically smooth surface with an RMS roughness of around 0.3 nm achieved over 5×5 µm 2 AFM scale. Furthermore, the motion of the steps in a one dimension model has been proposed to describe surface morphology evolution, especially the step bunching feature found under non-optimal conditions. In Chapter 5, control of alloy composition and the maintenance of compositional uniformity across a growing epilayer surface were demonstrated for the development of u-AlGaN epilayers. Optimized conditions (i.e. a high growth temperature of 1245 °C) produced uniform and smooth film with a low RMS roughness of around 2 nm achieved in 20×20 µm 2 AFM scan. The dopant that is most commonly used to obtain n-type conductivity in AlxGa1-xN is Si. However, the incorporation of Si has been found to increase the strain relaxation and promote unintentional incorporation of other impurities (O and C) during Si-doped AlGaN growth. In Chapter 6, reducing edge-type TDs is observed to be an effective appoach to improve the electric and optical properties of Si-doped AlGaN epilayers. In addition, the maximum electron concentration of 1.3×1019 cm-3 and 6.4×1018 cm-3 were achieved in Si-doped Al0.48Ga0.52N and Al0.6Ga0.4N epilayers as measured using Hall effect. Finally, in Chapter 7, studies on the growth of InAlN/AlGaN multiple quantum well (MQW) structures were performed, and exposing InAlN QW to a higher temperature during the ramp to the growth temperature of AlGaN barrier (around 1100 °C) will suffer a significant indium (In) desorption. To overcome this issue, quasi-two-tempeature (Q2T) technique was applied to protect InAlN QW. After optimization, an intense UV emission from MQWs has been observed in the UV spectral range from 320 to 350 nm measured by room temperature photoluminescence.
Resumo:
This thesis presents theoretical investigations of the sub band structure and optical properties of semiconductor quantum wires. For the subband structure, we employ multiband effective-mass theory and the effective bond-orbital model both of which fully account for the band mixing and material anisotropy. We also treat the structure geometry in detail taking account of such effects as the compositional grading across material interfaces. Based on the subband structure, we calculate optical properties of quantum-wire structures. A recuring theme is the cross-over from one- to ~wo-dimensional behavior in these structures. This complicated behavior procludes the application of simple theoretical models to obtain the electronic structure. In particular, we calculate laser properties of quantum wires grown in V-grooves and find enhanced performance compared with quantum-well lasers. We also investigate optical anisotropy in quantum-wire arrays and propose an electro-optic device based on such structures.
Resumo:
Homoepitaxial ZnO/(Zn,Mg)O multiple quantum wells (MQWs) grown with m- and r-plane orientations are used to demonstrate Schottky photodiodes sensitive to the polarization state of light. In both orientations, the spectral photoresponse of the MQW photodiodes shows a sharp excitonic absorption edge at 3.48 eV with a very low Urbach tail, allowing the observation of the absorption from the A, B and C excitonic transitions. The absorption edge energy is shifted by ∼30 and ∼15 meV for the m- and r-plane MQW photodiodes, respectively, in full agreement with the calculated polarization of the A, B, and C excitonic transitions. The best figures of merit are obtained for the m-plane photodiodes, which present a quantum efficiency of ∼11%, and a specific detectivity D* of ∼6.4 × 1010 cm Hz1/2/W. In these photodiodes, the absorption polarization sensitivity contrast between the two orthogonal in-plane axes yields a maximum value of (R⊥/R||)max ∼ 9.9 with a narrow bandwidth of ∼33 meV.
Resumo:
This thesis presents studies of the role of disorder in non-equilibrium quantum systems. The quantum states relevant to dynamics in these systems are very different from the ground state of the Hamiltonian. Two distinct systems are studied, (i) periodically driven Hamiltonians in two dimensions, and (ii) electrons in a one-dimensional lattice with power-law decaying hopping amplitudes. In the first system, the novel phases that are induced from the interplay of periodic driving, topology and disorder are studied. In the second system, the Anderson transition in all the eigenstates of the Hamiltonian are studied, as a function of the power-law exponent of the hopping amplitude.
In periodically driven systems the study focuses on the effect of disorder in the nature of the topology of the steady states. First, we investigate the robustness to disorder of Floquet topological insulators (FTIs) occurring in semiconductor quantum wells. Such FTIs are generated by resonantly driving a transition between the valence and conduction band. We show that when disorder is added, the topological nature of such FTIs persists as long as there is a gap at the resonant quasienergy. For strong enough disorder, this gap closes and all the states become localized as the system undergoes a transition to a trivial insulator.
Interestingly, the effects of disorder are not necessarily adverse, disorder can also induce a transition from a trivial to a topological system, thereby establishing a Floquet Topological Anderson Insulator (FTAI). Such a state would be a dynamical realization of the topological Anderson insulator. We identify the conditions on the driving field necessary for observing such a transition. We realize such a disorder induced topological Floquet spectrum in the driven honeycomb lattice and quantum well models.
Finally, we show that two-dimensional periodically driven quantum systems with spatial disorder admit a unique topological phase, which we call the anomalous Floquet-Anderson insulator (AFAI). The AFAI is characterized by a quasienergy spectrum featuring chiral edge modes coexisting with a fully localized bulk. Such a spectrum is impossible for a time-independent, local Hamiltonian. These unique characteristics of the AFAI give rise to a new topologically protected nonequilibrium transport phenomenon: quantized, yet nonadiabatic, charge pumping. We identify the topological invariants that distinguish the AFAI from a trivial, fully localized phase, and show that the two phases are separated by a phase transition.
The thesis also present the study of disordered systems using Wegner's Flow equations. The Flow Equation Method was proposed as a technique for studying excited states in an interacting system in one dimension. We apply this method to a one-dimensional tight binding problem with power-law decaying hoppings. This model presents a transition as a function of the exponent of the decay. It is shown that the the entire phase diagram, i.e. the delocalized, critical and localized phases in these systems can be studied using this technique. Based on this technique, we develop a strong-bond renormalization group that procedure where we solve the Flow Equations iteratively. This renormalization group approach provides a new framework to study the transition in this system.
Resumo:
本文研究了在被飞秒脉冲波列激发的半导体量子阱中再发射场的相位性质。再发射场的相位演化受入射脉冲波列的相对相位控制。对于所有的奇数次入射脉冲激发,再发射场与入射场相位演化是:反相到同相再到反相;但是对于所有的偶数次入射脉冲激发,情况发生了反转,即再发射场与入射场相位演化是:同相到反相再到同相。
Resumo:
Coherent population accumulations of multiphoton transitions induced by an ultrashort pulse train in a two-level polar molecule are investigated theoretically by solving the density-matrix equations without invoking any of the standard approximations. It is shown due to the effects of permanent dipole moments, that the population accumulation of multiphoton transitions can be obtained in the polar molecule. Moreover, the population accumulations depend crucially on the relative phase between two sequential pulses, and the period in which the maximum population accumulation occurs is 2 pi/N in N-photon transitions.
Resumo:
通过求解麦克斯韦-布洛赫方程组,分别在存在传播效应和无传播效应两种情况下,研究了调制掺杂的半导体量子阱中子带间的拉比振荡。研究发现,与电子-电子之间的相互作用的非线性相比较,传播效应对拉比振荡的影响更大;在不考虑传播效应时,脉冲可以使量子阱中的电子实现一次完整的布居反转,但是当传播效应存在情况下,完全的粒子数反转已不能实现。另外,研究还发现通过改变载流子的密度可以改变传播效应所产生的影响。
Resumo:
Reaching the strong coupling regime of light-matter interaction has led to an impressive development in fundamental quantum physics and applications to quantum information processing. Latests advances in different quantum technologies, like superconducting circuits or semiconductor quantum wells, show that the ultrastrong coupling regime (USC) can also be achieved, where novel physical phenomena and potential computational benefits have been predicted. Nevertheless, the lack of effective decoupling mechanism in this regime has so far hindered control and measurement processes. Here, we propose a method based on parity symmetry conservation that allows for the generation and reconstruction of arbitrary states in the ultrastrong coupling regime of light-matter interactions. Our protocol requires minimal external resources by making use of the coupling between the USC system and an ancillary two-level quantum system.
Resumo:
The magnetisation of heavy holes in III-V semiconductor quantum wells with Rashba spin-orbit coupling (SOC) in an external perpendicular magnetic field is studied theoretically. We concentrate on the effects on the magnetisation induced by the system boundary, the Rashba SOC and the temperature. It is found that the sawtooth-like de Haas-van Alphen (dHvA) oscillations of the magnetisation will change dramatically in the presence of such three factors. Especially, the effects of the edge states and Rashba SOC on the magnetisation are more evident when the magnetic field is smaller. The oscillation center will shift when the boundary effect is considered and the Rashba SOC will bring beating patterns to the dHvA oscillations. These effects on the dHvA oscillations are preferably observed at low temperatures. With increasing temperature, the dHvA oscillations turn to be blurred and eventually disappear.
Resumo:
Lanthanide doped zirconia based materials are promising phosphors for lighting applications. Transparent yttria stabilized zirconia fibres, in situ doped with Pr3+ ions, were grown by the laser floating zone method. The single crystalline doped fibres were found to be homogeneous in composition and provide an intense red luminescence at room temperature. The stability of this luminescence due to transitions between the 1D2 → 3H4 multiplets of the Pr3+ ions (intra-4f2 configuration) was studied by photo- and iono-luminescence. The evolution of the red integrated photoluminescence intensity with temperature indicates that the overall luminescence decreases to ca. 40% of the initial intensity at 14 K when heated to room temperature (RT). RT analysis of the iono-luminescence dependence on irradiation fluence reveals a decrease of the intensity (to slightly more than ∼60% of the initial intensity after 25 min of proton irradiation exposure). Nevertheless the luminescence intensity saturates at non-zero values for higher irradiation fluences revealing good potential for the use of this material in radiation environments.
Resumo:
A novel wideband polarization-insensitive semiconductor optical amplifier (SOA) gate containing compressively strained InGaAs quantum wells and tensile-strained InGaAs quasi-bulk layers is developed. The fabricated SOA gates have a wide 3-dB optical bandwidth of 102 nm, less than 0.8-dB polarization sensitivity, more than 50-dB extinction ratio, and less than 75-mA fiber-to-fiber lossless operating current. (C) 2004 Society of Photo-Optical Instrumentation Engineers.